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Abstract—Distributed prosumers face market risks such as 

price fluctuations, load demand changes, and renewable energy 

generation output uncertainties when participating in electricity 

energy and ancillary service markets. In this paper, a bid 

decision model for distributed prosumers in the daily electricity 

and ancillary market is established using the Information Gap 

Decision Theory (IGDT). First, the agency architecture for 

distributed prosumers participating in these markets is 

analyzed. Next, a multi-type distributed resource regulation 

model is constructed, forming the basis of a decision model for 

the participation of distributed prosumers in the joint energy 

and ancillary market. Then, the various uncertainties faced by 

prosumers in their decision-making process are quantitively 

modeled using the information entropy theory, and an IGDT-

based robust optimization model for deriving bidding strategies 

is developed. Finally, the proposed model is validated in the 

modified IEEE 33-node distribution system, and the bidding 

strategies generated by the proposed model effectively addresses 

the multiple uncertainties faced by prosumers, safeguarding 

their profits.  

Keywords—IGDT, electricity energy market, ancillary services 

market, information entropy theory  

I. INTRODUCTION 

With the increasing share of uncertain resources such as 
wind power, solar photovoltaics, and demand response, 
relying solely on traditional supply-side and grid-side 
regulation measures is no longer sufficient to meet the 
flexibility requirements of the new power system[1]. 
Ancillary services in the electricity market serve as one of the 
means to enhance the flexibility of the power system by 
encouraging the participation of distributed prosumers, 
including commercial and industrial users and energy storage 
facilities. However, market risks such as price fluctuations and 
load demand variations have an impact on the profitability and 
enthusiasm of distributed prosumers. Therefore, under the 
premise of adhering to market rules and ensuring the safe and 
stable operation of the power system, selecting an appropriate 
bidding strategy under multiple uncertainties becomes a 
crucial issue for distributed prosumers participating in the 
ancillary service market [2-3]. 

In recent years, the academic community has conducted 
extensive research on the participation of emerging prosumers 
in ancillary service markets to facilitate coordination in the 
electricity market. An investment portfolio theory-based 

decision model for bidding on electric vehicle reserve capacity 
was proposed in [4]. A direct control-based temperature load 
bidding decision model considering comfort requirements for 
participation in day-ahead frequency regulation and reserve 
markets was developed in [5]. Considering the master-slave 
game relationship between aggregator and electric vehicles, 
Ref. [6] established a centralized electricity-reserve bidding 
optimization model that incorporates charging and 
discharging behavior preferences. However, the centralized 
optimization approach cannot protect the privacy of individual 
entities. The aforementioned models are deterministic and do 
not effectively consider the uncertainty factors faced by 
distributed prosumers in optimizing their bidding strategies. 

Currently, the research foundation exists for strategies 
under uncertainty [7-8]. However, the uncertainty modeling 
methods have certain limitations: the interval method requires 
pre-determining the range of uncertain quantities, and 
obtaining the probability density function of random variables 
in fuzzy decision-making is challenging. Uncertainty 
optimization methods based on scenario generation 
effectively consider various typical scenarios [9-10]. However, 
the uncertainty decision methods based on scenario generation 
have some limitations. Too many scenarios can affect the 
accuracy of decision-making [11], and there is a lack of 
unified evaluation criteria for the diversity of scenarios and 
the variety of solutions. 

IGDT is a probability-independent uncertainty decision 
method [12-14]. An IGDT-based comprehensive energy 
system expansion planning model that only considers load 
uncertainty was established in [15]. To handle multiple 
uncertainty factors, a two-level economic dispatch strategy 
based on IGDT for electric vehicle integration into a virtual 
power plant was proposed in [16] with linearly superposing 
the uncertain variables of load and time-of-use electricity 
prices as a single variable solution. A joint bidding strategy 
for wind-fire-energy storage participating in the electricity 
energy market based on IGDT was developed in [17], which 
equally weighted the uncertainties of solar, storage, and load. 
It should be noted that the aforementioned IGDT-based 
decision methods simplify the treatment of uncertainties. 
However, in the day-ahead electricity-reserve bidding 
decisions, prosumers face multiple uncertainties such as price 
fluctuations, load demand variations, and fluctuations in 
renewable energy generation. It is necessary to quantify the 
importance of each uncertainty factor. Based on this, this 
paper quantifies the weights of multiple uncertainty factors in 
the bidding decision model for prosumers using the theory of 
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information entropy, and further constructs a robust 
optimization model based on IGDT. 

In this context, this paper establishes a bidding decision 
model for prosumers in the day-ahead electricity-reserve 
market considering multiple uncertainty factors. First, a 
revenue model for prosumer electricity-reserve bidding is 
established. The weights of multiple uncertainty factors are 
quantified based on information entropy theory. A two-level 
optimization model based on IGDT is then formulated to 
determine strategies that can withstand the volatility of 
uncertainty factors, effectively safeguarding prosumer 
revenue. 

II. DAY-AHEAD ELECTRICITY-RESERVE MARKET 

BIDDING DECISION MODEL 

The flexible resources available to distributed prosumers 
on the distribution side include renewable energy generation 
devices, distributed fossil fuel generation devices, energy 
storage systems, and flexible loads. The prosumer agent 
integrates the dispersed resources of the prosumers and acts 
as a price receiver. Using predicted electricity and reserve 
market prices, the agent optimizes the bidding quantities of 
each prosumer. The optimization objective is to maximize the 
total revenue of all prosumers in time period T. 

 ( )total ,ele ,rev ,oprmax t t t

i i i i
i A i A t T

F F F F C
  

= = + −    () 

Where A  represents the set of prosumers, 
totalF  

represents the total revenue of all prosumers, 
iF  represents 

the total revenue of prosumers at node i, ,ele

t

iF  represents the 

revenue of prosumers at node i in time period t from the day-

ahead electricity market, ,rev

t

iF  represents the revenue of 

prosumers from participating in the reserve ancillary services 

market, 
,opr

t

iC  represents the scheduling cost of their 

equipment. 

(1) Electricity market revenue: 

 ( ),ele s ,s b ,b

t t t t t

i i iF P P t = −   () 

Where b
t

  and s
t

  represent the purchase and selling 

prices in the electricity market for time period t, respectively. 

,b
t
iP  and ,s

t
iP  represent the purchased and sold power in the 

electricity market for prosumer at node i during time period t, 

respectively. t  represents the duration of each optimization 

time period. 

(2) Reserve ancillary services market revenue: 

 ,rev r d d ,d u u ,u( )t t t t t t t t t t
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Where 
r

t  represents the predicted clearing price in the 

day-ahead reserve capacity market. 
t

iU  and 
t

iD  represent the 

upward and downward reserve capacity at node i. 
u

t  and 
d

t  

represent the predicted real-time prices for upward and 

downward reserve capacity activation, respectively. 
u

t  and 

d

t  represent the predicted real-time upward and downward 

reserve capacity activation rates. 

(3) Prosumer equipment dispatch cost: 
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Where ,rgic , ,dgic  and 
,essic  represent the cost coefficients 

of renewable energy generation devices, distributed fossil 
fuel generation devices, and energy storage devices at node i, 

respectively. 
,rg

t

iP  and 
,dg

t

iP  represent the power generation of 

renewable energy generation devices and distributed fossil 
fuel generation devices at node i in time period t, respectively. 

,c

t

iP  and ,dc

t

iP  represent the charging power and discharging 

power of energy storage devices, respectively. 

The constraint conditions include: 

(1) Power balance constraint: 
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Where ,v

t

iP  and ,f

t

iP  represent the controllable and 

uncontrollable load values of the prosumer at node i in time 

period t, respectively. 
,rg

t

iU , 
,dg

t

iU , ,ess

t

iU  and ,v

t

iU  represent 

the upward capacity of their renewable energy generation 
devices, distributed fossil fuel generation devices, energy 

storage devices, and controllable load, respectively. 
,rg

t

iD , 

,dg

t

iD , ,ess

t

iD  and ,v

t

iD  represent the downward capacity of 

their renewable energy generation devices, distributed fossil 
fuel generation devices, energy storage devices, and 
controllable load, respectively.   is the coefficient of the 

upward capacity to downward capacity ratio. 

(2) Renewable energy generation device output constraint: 
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Where ,rg-r

t

iP  and ,rg-c

t

iP  represent the predicted maximum 

output and the reduced output for reserve upward adjustment 
of the renewable energy generation device, respectively. 

(3) Distributed fossil fuel generation device output 
constraint: 

 
min max
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Where 
max

,dgiP  and 
min

,dgiP  represent the upper and lower 

limits of the output of the distributed fossil fuel generation 

device at node i, and ,dgi  represents the ramp rate limit of 

the generator, respectively. 



(4) Energy storage device output constraint: 
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Where ,ess

t

iS  represents the state of charge of the energy 

storage device of the prosumer. 
min

,essiS  and 
max

,essiS  represent the 

lower and upper limits of its state of charge. 
,dci  and 

,ci  

represent the discharge efficiency and charge efficiency of 

the energy storage device, respectively. 
,essiQ  is the rated 

capacity of the energy storage device. max
,dciP  and max

,ciP  

represent the maximum discharge power and maximum 

charge power, respectively. ,ess

t

iy  is the charging and 

discharging state variable, where 1 represents charging and 0 
represents discharging. 

The reserve capacity provided by the energy storage 
device should satisfy: 
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Equation (21) and (22) limit the reserve capacity provided 
by the energy storage device to the available capacity at the 
maximum charge and discharge power. Equation (23) and (24) 
ensure that the energy storage device only provides reserve 
capacity when its state of charge is within the lower and upper 
limits. 

(5) Load constraint: 

The shiftable load refers to the load that can be shifted 
according to the planned schedule and is subject to the 
constraint of the continuity of the electricity consumption 
process. Its characteristics can be described as follows: 
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Where ,p-a

t

iP  represents the adjusted shiftable load value 

at node i in time period t. ,p-r

t

iP represents the predicted value 

of the shiftable load. ,in

t

iP and ,out

t

iP represent the shiftable 

load values shifted into and out. W represents the maximum 

duration of continuous operation for the shiftable load. 
,

,p

k t

ix  

is a binary variable that takes a value of 0 or 1, where 
,

,p 1k t

ix =  

and 
,

,p 0k t

ix =  indicate whether there is shiftable load shifted 

into or out of time period t from time period k at node i. 

The interruptible load can provide upward reserve by 
reducing or interrupting the load. Its characteristics can be 
described as follows: 

 ,x-a ,x-r ,x-c

t t t

i i iP P P= −  () 

 ,x-c ,x ,x-r0 t t
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Where ,x-a

t

iP  represents the adjusted interruptible load 

value at node i in time period t. ,x-r

t

iP  and ,x-c

t

iP  represent the 

predicted value and the reduction power value of the 

interruptible load. 
,xi  represents the maximum reduction 

ratio allowed for the prosumer at node i. 

The total reserve capacity provided by shiftable load and 
interruptible load is given by: 

 ( ),v ,out ,x-c     t t t

i i iU P P t= +   () 

 ,v ,in

t t

i iD P t=   () 

The uncontrollable load has no adjustable flexibility and 
does not provide reserve capacity. Its characteristics can be 
described as follows: 

 ,f ,f-r

t t

i iP P=  () 

Where ,f-r

t

iP  represents the predicted value of the 

uncontrollable load at node i in time period t. 

III. A ROBUST OPTIMIZATION MODEL CONSIDERING 

MULTIPLE UNCERTAINTIES 

Due to the presence of uncertainty factors, risk-averse 
prosumers may require their agents to optimize bid quantities 
in a way that guarantees a minimum total revenue not less 

than a certain expected revenue exF . They aim to pursue a 

bidding strategy that maximizes resistance to the deviations 
caused by uncertain factors. Based on the IGDT risk decision-
making theory [18-19], the following robust optimization 
model can be established: 
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 . . min ( , )i i
i A
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 Equation (1)~(32) () 

Where i  represents the set of bid quantities for 

prosumer i considering multiple uncertainties and risks.   

represents the magnitude of the fluctuations of the uncertain 

parameter. X  represents the actual values of uncertain 

parameters. Let ( )1,2 5m m =   denote the deviation 

coefficient for each of the five uncertain parameter indicators 

for the prosumer. mX  represents the normalized data after 

the normalization process.   represents the acceptable range 

of revenue deviation, which is the deviation between the 
expected robust optimization objective and the optimal 

solution ,0i
i A

F


  of the deterministic model when (0,1)  . 



A larger value   of indicates a higher degree of risk aversion 

in the decision-making process. 

Once the fluctuation coefficient   of the uncertain 

quantity is determined, it is apparent that the minimum total 
revenue for the prosumer occurs when each uncertain 

variable is equal to 1 m  times its nominal value. Therefore, 

Equation (35) can be transformed into: 
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() 
The IGDT robust decision-making model considering 

multiple uncertainties, represented by Equation (33)-(42), is 
a two-level optimization model. The upper-level objective is 
to maximize the deviation of uncertain quantities, 
corresponding to the worst-case scenario where the total 
revenue for prosumers is minimized. The solution steps for 
the IGDT-based robust optimization model are as follows: 

Step 1: Set an initial value 0 0kk = =、 . Disregard the 

uncertainty factors, i.e., X X= . Solve the deterministic 

model to obtain the bidding strategies ,0i  and the total 

revenue ,0i
i A

F


  for each prosumer. 

Step 2: For 
1 1k k k k  + = +  = +、 , solve the 

optimization problem to obtain the optimal bidding strategies 

, 1i k +
 for each prosumer with the fluctuation coefficient 1k +  

of the uncertain quantity. 

Step 3: Evaluate whether the total revenue , 1i k
i A

F +


  of 

prosumers under the fluctuation coefficient 1k +  of the 

uncertain quantity meets the minimum required total revenue 

exF , according to Equation (37). If , 1 exi k
i A

F F+


 , proceed 

to Step 4; otherwise, go back to Step 2. 

Step 4: Obtain the maximum fluctuation range 
k  of the 

uncertain quantity and the corresponding set ,i k  of bidding 

quantities for prosumers. 

IV. CASE STUDY AND RESULTS 

A. Parameter Setting 

The modified IEEE 33-node distribution system is used 
for case studies. The topological structure of the system is 
shown in Figure 1. It is assumed that there is a total of 12 
distributed prosumers, located at nodes 2, 3, 4, 6, 9, 13, 17, 
20, 21, 23, 28, and 32, referred to as prosumers a-l. Each 
prosumer is equipped with a battery energy storage system 
and a photovoltaic generation device. Load data and the 
maximum output of renewable energy generation devices are 
taken from references [20-21]. The optimization time interval 

is set as △t=1h, and the number of optimization time 

intervals is T=24. The predicted values of electricity prices 
and reserve capacity prices for each time interval are obtained 
from reference [11]. 
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Fig. 1. Topology of IEEE 33-node power distribution system 
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(b) Decrease in reserve capacity 

Fig. 2. Upward and downward band of each equipment owned by 

prosumer b 
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Fig. 3. Load curve of prosumer b 

Figure 2 shows the reserve capacity provided by each 
device of prosumer b, and Figure 3 depicts the load curve of 
prosumer b before and after optimization. Due to the low load 
and device output in hour 1-4, both the energy storage system 
and distributed fossil energy generation devices can provide 
a large amount of upward and downward reserve capacity. 
During hour 9-19, which is the period of renewable energy 



generation, the photovoltaic generation device of prosumer b 
is dispatched at full capacity due to its low generation cost. 
Therefore, the photovoltaic generation device only provides 
a certain amount of downward reserve capacity. In the peak 
demand period from hour 19-22, the load is flattened through 
load shifting and load shedding, allowing the dispatchable 
distributed fossil energy generation devices and energy 
storage systems to provide a certain amount of downward 
reserve capacity. On average, the upward reserve capacity 
provided by the distributed fossil energy generation devices 
and energy storage systems is 28.3% higher than the 
downward reserve capacity. 

B. Simulation Results of Robust Optimization Model 

Considering Multiple Uncertainties 

The entropy weights of the uncertain variables, 
representing the relative importance of each uncertainty 
factor, are as follows: 0.211 for the maximum output of 
renewable energy, 0.123 for the electricity market price, 
0.164 for the reserve market price, 0.307 for the reserve 
capacity utilization rate, and 0.195 for the load. 

The profit deviation factor represents the deviation 
between the expected profit and the deterministic profit. 
Figure 4 shows the variation of the uncertainty coefficient   

with the profit deviation factor  . The red curve represents 

the sum of the uncertainty coefficients for the five uncertainty 

factors, i.e., 
5

1
m

i


=

= . When 0 = , the uncertainty 

coefficients for all five factors start from zero, indicating no 
profit deviation when all uncertainties are perfectly predicted. 
As   increases, the ranges of fluctuation for the five 

uncertainty parameters also increase, indicating that 
prosumers adopt more robust bidding strategies to withstand 
a wider range of prediction errors at the cost of reducing 
expected profit. 
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Fig. 4. Variation of uncertain quantity fluctuation coefficient and 
expected return with return deviation coefficient 

When 0.46 = , the uncertainty coefficients   reach 

their maximum value of 1, and   remain unchanged as   

increases. This indicates that when 0.46  , the uncertainty 

constraints by Equation (38)-(42) are no longer effective 
boundary constraints, meaning that prosumers cannot further 
enhance the robustness of their bidding strategies by reducing 
their expected profit. Therefore, prosumers should set the 

expected total profit deviation to 0.46  . 

Let's analyze the profit situation of prosumers under the 

scenario 0.25 = . From Figure 4, we can see that the 

minimum total profit for the 12 prosumers is 153.9 units, with 
a fluctuation coefficient of 0.62 = . This means that even 

with a 13.1% lower maximum output of renewable energy, 

12.2% higher load than expected, 19.3% lower actual reserve 
utilization rate than predicted, 10.6% lower reserve market 
price than predicted, and 7.6% deviation in electricity market 
price compared to the prediction, the total profit of the 
prosumers can still be maintained at or above 153.9 units. 

Figure 5 shows the equipment output and bidding 

quantity of prosumer b at different   level. At 0.25 = , the 

proportional contribution of the distributed fossil fuel-based 
generation and energy storage devices in prosumer b's output 
increases by 14.6% and 7.2% respectively, while the output 
of the renewable energy generation device decreases by 5.6%. 
This indicates that as   increases, the agent faces increased 

uncertainty and risk in optimizing bidding strategies, and 
therefore prefers to dispatch more stable devices (distributed 
fossil fuel-based generation and energy storage devices) to 
increase their output, while reducing the output of devices 
(renewable energy generation) with stochastic fluctuations. 
Compared to the deterministic model, due to the risk of price 
fluctuations in the electricity market and reserve market, the 
electricity market bidding quantity and reserve market 
bidding quantity of prosumer b decrease by 4.7% and 3.6% 
respectively. However, since prosumer b still has significant 
electricity demand, the decrease in bidding quantity is not 
significant. 
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under different   



 

Fig. 6. Comparison of total revenue for different bidding strategy 

C. Comparative Analysis 

In each specific coefficient   of uncertainty, 10 typical 

scenarios were generated using the Monte Carlo random 
sampling method [9]. Figure 6 shows the comparison of total 
profits for all prosumers between deterministic bidding 
strategy and stochastic bidding strategy under each scenario. 
The profit ratio is defined as the ratio of total profit obtained 
from the stochastic strategy to the total profit obtained from 
the deterministic strategy. The results indicate that in 75.6% 
of the scenarios, the stochastic strategy outperforms the 
deterministic strategy in terms of total profit. Furthermore, as 
the uncertainty coefficient increases, the advantage of the 
stochastic bidding strategy becomes more pronounced. 
Specifically, when the coefficient reaches 0.9 = , the 

average total profit of the stochastic strategy is 37.4% higher 
than that of the deterministic strategy across all 10 scenarios. 

V. CONCLUSION 

This paper establishes a decision model for the joint 
energy and reserve market bidding of distributed prosumers 
based on information gap decision-making. Through case 
simulations, the following conclusions are drawn: 

An agent-based approach for distributed prosumers is 
established, where the agent aggregates the dispersed bidding 
quantities of all prosumers and submits them to the day-ahead 
market. This approach effectively ensures the market 
participation of distributed prosumers. 

By applying the information entropy theory, the various 
uncertainties faced by prosumers in the day-ahead bidding 
process can be quantified effectively. The bid strategy 
optimization model based on IGDT enhances the robustness 
of bid strategies, thereby effectively safeguarding the profits 
of prosumers. 

In the future research, electricity transactions among 
prosumers, and the participation of distributed prosumers in 
medium to long-term power and carbon-green certificate 
trading will be studied and further integrated into the 
proposed models and methods. 
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