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Abstract. A low-dimensional embedding can be easily applied in the down-

stream tasks for network mining and analysis. In the meantime, the popular mod-

els of random walk-based network embedding are viewed as the form of matrix 

factorization, whose computational cost is very expensive. Moreover, mapping 

different types of nodes into one metric space may result in incompatibility. To 

cope with the two challenges above, a weighted meta-path embedding framework 

(WMPE) is proposed in this paper. On one hand, a nearly-linear approximate 

embedding approach is leveraged to reduce the computational cost. On the other 

hand, the meta-path and its weight are learned to integrate the incompatible se-

mantics in the form of weighted combination. Experiment results show that 

WMPE is effective and outperforms the state-of-the-art baselines on two real-

world datasets. 

 

Keywords: Heterogeneous Information Networks, Network Embedding, Rep-

resentation Learning, Meta-path Learning. 

1 Introduction 

In the real world, a variety of entities and relationships can be abstracted and repre-

sented as heterogeneous information networks (HINs), on which data mining and anal-

ysis have raised increasing attention in the past decade due to the complex structures 

and rich semantic information. In the meantime, network embedding, mapping a high-

dimensional and sparse network into a low-dimensional and dense space to learn the 

latent representation of nodes and edges while preserving the multiplex semantics, is 

extremely convenient for network analysis, e.g., classification [1], clustering [2], link 

prediction [3], and recommendation system [4]. 

Matrix factorization is widely utilized for network embedding. Transform network 

into the form of matrix and decompose it, so that each node can be represented as a 

distribution on the latent semantics. However, it is hardly suitable for large-scale net-

works due to the expensive computational cost. Inspired by Word2Vec algorithm, a 

series of random walk-based models [6-8] introduce neural network into the task of 

graph embedding, and achieve significant successes. Nevertheless, a recent study [9] 

shows that methods aforementioned can be viewed as asymptotically and implicitly 

process of matrix factoring in essence. 
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Heterogeneous information network brings not only the rich semantic information, 

but also the conflicts among variety of relationships, which is more complex and diffi-

cult to deal with. For example, a node is associated with two different types of nodes, 

which are irrelevant each other. It is hard to represent the sematic that a node is simul-

taneously close to two distant nodes in one metric space. Therefore, embedding differ-

ent types of nodes and edges into a same feature space will lead to semantic incompat-

ibility, which brings the special challenge for HINs embedding. 

With the intention to solve the problems aforementioned, we propose a weighted 

meta-path embedding framework, referred to as WMPE, to learn the nodes representa-

tion for HINs. Firstly, bypassing the eigen-decomposition, an approximate commute 

embedding approach is utilized to embed the heterogeneous network into a low-dimen-

sional metric space, which reduce the computational cost in nearly-linear time. Aiming 

at the existence of semantic incompatibility in HINs, a set of meta-paths are automati-

cally generated. Furthermore, the weight of each meta-path is learned by optimizing the 

loss function with a small number of labeled nodes. At last, relatedness between nodes 

are obtained in the form of weighted combination of meta-paths atop node embeddings. 

In this way, we can preserve the different semantics specified by the generated meta-

paths even in the presence of incompatibility.  

The main contributions of this paper can be summarized as follows: 

• Instead of eigen-decomposition, the nearly-linear approximate embedding approach 

is capable of applying in large-scale HINs. 

• Without any domain knowledge or user guidance, meta-paths are automatically gen-

erated. We designed an optimization model to learn the importance of each meta-

path.  

• Extensive experiments demonstrate the capability of the proposed model, which out-

performs the state-of-the-art baselines on two real-world datasets. 

2 Related Work 

2.1 Meta-path of HIN 

Meta-path describes the rich semantic via a sequence of relations amongst objects in 

HINs and using meta-paths to characterize the heterogeneity is distinct from that of 

homogeneous networks. The major line of work focusing on meta-path-based similarity 

or meta-path-based neighbors has been footstone for broad applications of heterogene-

ous information networks. PathSim [10] leverages the normalized number of reachable 

paths complying with the schema of meta-path to compute the similarity between a pair 

of nodes, and PathSelClus [11, 12] integrates a suite of meta-paths to extract network 

structure for objects clustering, where the paths are defined to be symmetrical and the 

relatedness is only measured between objects with the same type. In consideration of 

the asymmetric meta-paths, HeteSim [13] improves the method and focuses on rele-

vance measure for objects with the same type or different types. Recently, some models 

[21-23] extract the meta-paths-level structural property and integrate other methods for 

HINs mining and analysis. However, the meta-paths are prepared in advance and 
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treated equally, ignoring the fact that importance of the semantic information repre-

sented by corresponding meta-path is different from each other. 

2.2 Network Embedding 

Network embedding can be traced back to the usage of matrix factorization. Initially, 

matrix factorization is used to the dimension reduction, such as Multi-dimension Scal-

ing (MDS) [14], Spectral Clustering [5], and Laplacian eigenmaps [15]. These methods 

transform the network into a matrix, and then a low-dimensional representation of the 

network can be obtained by matrix eigen-decomposition on each eigenvector. GraRep 

[16] decomposes 𝑘-step transition probability matrixes and integrates the 𝑘 relation-

ships to represent global characteristics of weighted network. HOPE [17] and M-NMF 

[18] capture network properties by depicting the 𝑛-th order proximity to construct re-

lation matrixes for directed edges and macroscopic community structure respectively, 

where the optimizing process of matrix decomposition is quadratic time complexity at 

least. Therefore, the matrix factorization-based embedding is difficult to apply to large-

scale networks.  

Inspired by word embedding, the random walk-based models introduce neural net-

work into network representation learning. DeepWalk [6] samples the network by 

depth-first random walk to generate nodes sequence, which can be served as “word-

context” sentences for Word2Vec model to learn the nodes vectors. As an extension of 

DeepWalk, node2vec [8] designs a biased walk to explore the neighborhood of nodes 

in combination with BFS and DFS styles. LINE [7] defines the similarity of first-order 

proximity and second-order proximity to optimize objective function. However, refer-

ence [9] expounds the theoretical connections among these models of random walk-

based network embedding, which can be induced to the form of matrix factorization.   

In consideration of the diverse semantics amongst multiple nodes in heterogeneous 

information network, metapath2vec [19] generates the context sequences guided by 

meta-paths, and improves the Skip-Gram model to adapt to the negative sampling. In 

addition, HIN2Vec [20] takes nodes and their relationships specified in forms of meta-

paths together as the input data for training, and also some efficient strategies are de-

veloped for data preparation. Recently, motivated by the great success of deep learning, 

some graph neural network models [21-23] are designed to extract “latent” semantics 

directly from a continuous distribution for HIN embedding. Reference [24] points out 

that, compared with homogenous networks, those methods above map multiple types 

of nodes and edges into one metric space, which will inevitably lead to incompatibility 

in heterogeneous information networks. 

3 Preliminaries 

In this section, we introduce some related concepts and formalize the notations. 

DEFINITION 1. Heterogeneous Information Network. An information network is a 

directed graph 𝐺 = (𝑉, 𝐸)  with a node type mapping function 𝜙: 𝑉 → 𝐴 and a link 

type mapping function 𝜑:𝐸 → 𝑅, where each node 𝑣 ∈ 𝑉 is mapped to one particular 
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node type in 𝐴, i.e., 𝜙(𝑣) ∈ 𝐴, and each edge 𝑒 ∈ 𝐸 is mapped to one particular link 

type in 𝑅, i.e., 𝜑(𝑒) ∈ 𝑅. When |𝐴| > 1or|𝑅| > 1, the network is called a heterogene-

ous information network. 

DEFINITION 2. Network schema. A network schema is denoted as 𝑇𝐺 = (𝐴, 𝑅) to 

abstract the meta-information of the given HIN 𝐺 = (𝑉, 𝐸) with node type mapping 

function 𝜙: 𝑉 → 𝐴 and a link type mapping function 𝜑: 𝐸 → 𝑅.  

DEFINITION 3. Meta-path. A meta-path is defined as a path schema in the form of 𝐴1
   𝑅1    
→   𝐴2

   𝑅2    
→   ⋯

   𝑅𝑡    
→   𝐴𝑙+1 , which describes a composite relation 𝑅 = 𝑅1 ∘ 𝑅2 ∘ ⋯ ∘

𝑅𝑙between type 𝐴1 and 𝐴𝑙+1, where ∘ denotes the composition operator on relations. 

DEFINITION 4. Path weight matrix. Given a meta-path 𝑝: 𝐴1 → 𝐴2 → ⋯ → 𝐴𝑙+1, 

the path weight matrix is defined as 𝑀 = 𝑊𝐴1𝐴2 ×𝑊𝐴2𝐴3 ×⋯×𝑊𝐴𝑙𝐴𝑙+1 , where 𝑊𝐴𝑖𝐴𝑗  

is the adjacency matrix between the nodes of 𝐴𝑖 and 𝐴𝑗. 𝑀𝑖𝑗 denotes the number of in-

stances complying with the meta-path 𝑝 from node 𝑖 ∈ 𝐴1  to node 𝑗 ∈ 𝐴𝑗. 

4 Framework of Proposed WMPE 

To cope with the expensive cost of matrix factorization in embedding process and in-

compatibility among heterogeneous semantics, we propose a weighted meta-path em-

bedding framework, referred to as WMPE, to learn the low-dimension embedding rep-

resentation for heterogeneous information networks. The framework of WMPE is 

shown in Fig.1, which includes in two phases. In the first phase, all the nodes in HIN 

are pretrained to learn the vectorized representation by a nearly-linear approximate em-

bedding approach. In the second phase, a set of meta-paths are automatically generated, 

and the weight of each meta-path is learned by optimizing the loss function with a small 

number of labeled nodes. Afterward, the proposed WMPE framework is described in 

detail. 

4.1 Approximate Commute Embedding 

Instead of the eigen-decomposition, an approach of approximate commute em-
bedding is applied to project the network into a low-dimension metric space for 
embedding learning, which can greatly reduce the computational complexity into 
nearly-linear time. 

Given a graph and its transition probability matrix, commute distance is defined as 

the expected steps from node 𝑖 to node 𝑗 by random walk. The probability, to measure 

the distance between 𝑖 and 𝑗, comprehensively considers all the reachable paths and 

reflects internal topological structure of the network. 

A HIN can be denoted by a directed graph 𝐺 with 𝑛 notes and 𝑠 edges. Given signed 

edge-vertex incidence matrix𝐵𝑠×𝑛, defined as  

𝐵(𝑒, 𝑣) = {
1，  if 𝑣 is the head of 𝑒， 
−1， if 𝑣 is the tail of 𝑒，  

0， otherwise，               
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Fig. 1. An illustration of the WMPE to deal with the HINs 

and diagonal matrix of edges weights 𝑊𝑠×𝑠,  the Laplacian 𝐿 = 𝐵𝑇𝑊𝐵 [25]. 

Therefore, the commute distance between node 𝑖 and 𝑗 can be written as: 
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where 𝑉𝐺 = ∑𝑤𝑖𝑗 . That is, 𝜃 = √𝑉𝐺𝑊
1/2𝐵𝐿+ ∈ ℝ𝑠×𝑛  is a commute embedding for 

HIN 𝐺 where 𝑐𝑖𝑗  is the squared Euclidean distance between the 𝑖-th and 𝑗-th column 

vectors in space 𝜃 . Since it takes 𝑂(𝑛3)  for the pseudo-inversion of 𝐿  in 𝜃 =

√𝑉𝐺𝑊
1/2𝐵𝐿+ , an approximate commute embedding method is adopted more effi-

ciently. 

LEMMA 1 [25]. Given vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅
𝑛×𝑠  and 𝜀 > 0, let 𝑄𝑘𝑟×𝑠be a random 

matrix where 𝑄(𝑖, 𝑗) = ±1/√𝑘𝑟  with equal probability 𝑘𝑟 = 𝛰(log 𝑛/𝜀
2) . For any 

pair 𝑣𝑖 , 𝑣𝑗, exist  

(1 − 𝜀)‖𝑣𝑖 − 𝑣𝑗‖
2
≤ ‖𝑄𝑣𝑖 − 𝑄𝑣𝑗‖

2
≤ (1 + 𝜀)‖𝑣𝑖 − 𝑣𝑗‖

2
 

with probability at least 1 − 1/𝑛. 

Therefore, construct a matrix 𝑍𝑘𝑟×𝑠 = √𝑉𝐺𝑄𝑊
1/2𝐵𝐿+ and we have: 
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(1 − 𝜀)𝑐𝑖𝑗 ≤ ‖𝑍(𝑒𝑖 − 𝑒𝑗)‖
2
≤ (1 + 𝜀)𝑐𝑖𝑗  

for ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝐺 , with probability at least 1 − 1/𝑛  from Lemma 1. That is,  𝑐𝑖𝑗 ≈

‖𝑍(𝑒𝑖 − 𝑒𝑗)‖
2
with an error 𝜀. Due to the expensive computational cost of 𝐿+, a nearly-

linear time method ST-solver [26] is used instead. Let 𝑌 = √𝑉𝐺𝑄𝑊
1/2𝐵, and 𝑍 = 𝑌𝐿+ 

which is equivalent to 𝑍𝐿 = 𝑌. Then each 𝑧𝑖 (the 𝑖-th row of 𝑍 ) is computed by solv-

ing the equation 𝑧𝑖𝐿 = 𝑦𝑖  where 𝑦𝑖  is the 𝑖-th row of 𝑌, and the solution is denoted as 

�̃�𝑖. Since ‖𝑧𝑖 − �̃�𝑖‖𝐿 ≤ 𝜀‖𝑧𝑖‖𝐿, we have: 

 (1 − 𝜀)2𝑐𝑖𝑗 ≤ ‖𝑍(𝑒𝑖 − 𝑒𝑗)‖
2
≤ (1 + 𝜀)2𝑐𝑖𝑗  (1) 

where 𝑍  is the matrix consisting of �̃�𝑖 . Equation (1) indicates that 𝑐𝑖𝑗 ≈ ‖𝑍(𝑒𝑖 −

𝑒𝑗)‖
2
with the error 𝜀2and 𝑍 is the approximate commute embedding of 𝐺. 

4.2 Meta-path Generation and Weight Learning 

In order to measure the semantic-level relatedness of nodes, a set of meta-paths are 

generated automatically by a random walk strategy. 

Given the start node type 𝐴𝑠 and end node type 𝐴𝑒, the target is to find all the meta-

paths in the form of 𝐴𝑠 −∗ −𝐴𝑒 within the maximum length 𝐿. On the network schema, 

start from node 𝐴𝑠, and randomly jump to the neighbor of current node for each step 

within 𝐿. Each time the node 𝐴𝑒  is reached, the sequential passed nodes compose a 

meta-path. Repeating this process for the number of iterations, a set of candidate meta-

paths are generated automatically. Note that, the start and end nodes can be of arbitrary 

types, not requiring the same type, and the path does not have to be symmetric. Fig.1(b) 

illustrates the process of meta-paths generation, the form is defined as 𝑎𝑢𝑡ℎ𝑜𝑟 −∗
−𝑎𝑢𝑡ℎ𝑜𝑟, with the maximum length 4. After the exploration on DBLP schema, a set 

of meta-paths are obtained including: APA, APPA, APPPA, APAPA, APCPA, and 

APTPA. 

The contributions of different semantic relationships specified by the meta-paths are 

not equivalent to a certain target. In fact, the conflicting, irrelevant semantics will result 

in low performances in the following tasks. Also, more meta-paths will increase the 

computation cost. A proper way is to assign higher weights to the meta-paths that can 

promote the downstream tasks, and discard the irrelevant and conflicting meta-paths. 

Therefore, we design an objective function to transform the weight learning process of 

meta-paths into an optimization problem. 

For a meta-path 𝑝𝑘 , we build the meta-path relatedness of node pair (𝑢, 𝑣) atop 

their approximate commute embeddings in the first phase as 

𝑠𝑖𝑚𝑘(𝑢, 𝑣) =
𝑒𝑥𝑝(𝑀𝑢𝑣

𝑘 ∙ g(𝑢, 𝑣))

∑ 𝑒𝑥𝑝(𝑀𝑢�̃�
𝑘 ∙ g(𝑢, �̃�)) + ∑ 𝑒𝑥𝑝(𝑀𝑢𝑣

𝑘 ∙ g(�̃�, 𝑣))𝜙(𝑢)=𝜙(𝑢)𝜙(�̃�)=𝜙(𝑣)

, 

where 𝑀𝑢𝑣
𝑘  denotes the number of paths between 𝑢 and 𝑣 following meta-path 𝑝𝑘, and 

g(𝑢, 𝑣) is the nodes closeness from 𝑢 to 𝑣. Considering the existence of both undirected 
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and directed relationships in heterogeneous networks, g(𝑢, 𝑣) ≠ g(𝑣, 𝑢) , if the path 

between the two nodes contains a directed relation. Especially, we decompose the pre-

trained node embedding into two sections 𝑥 = [𝑥
𝑂

𝑥𝐼
], where 𝑥𝑂 and 𝑥𝐼 are two column 

vectors of the same dimension, and define nodes closeness on approximate commute 

embedding as 

g(𝑢, 𝑣) = {
 2 𝑥𝑢

𝑂 ∙ 𝑥𝑣 
𝐼 ,                   directed from 𝑢 to 𝑣

 𝑥𝑢
𝑂 ∙ 𝑥𝑣

𝐼 + 𝑥𝑣
𝑂 ∙ 𝑥𝑢 

𝐼 ,     undirected                  
, 

where ∙ denotes the inner-product. 

on the contrary to the assumption that nodes of different types are independent each 

other, we hold the view that closely related nodes in a network are not only structurally 

but also semantically consistent. Therefore, taking all meta-paths into account, the lose 

function is designed to learn the weight of each meta-path as the follows: 

 𝐿(Θ) = ‖1 − 𝑠𝑖𝑔𝑛(𝑢, 𝑣) ∑ 𝜃𝑘𝑠𝑖𝑚𝑘(𝑢, 𝑣)
𝐾
𝑘=1 ‖2 + 𝛼‖Θ‖2  

where Θ = {𝜃1, 𝜃2, ⋯ , 𝜃𝐾}, 𝜃𝑘 is the importance of meta-path 𝑝𝑘, and 𝛼 is the regular-

ization parameter. The 𝑠𝑖𝑔𝑛() is an indicator function defined as 

 𝑠𝑖𝑔𝑛(𝑢, 𝑣) = {
 1,    𝑢 and 𝑣 have the same label
−1,   otherwise                                    

.  

The loss function is to maximize the importance of meta-path connecting nodes with 

same label and minimize that connecting nodes with different labels. 

In order to minimize 𝐿(Θ)，for each 𝑘 = 1,2,⋯ , 𝐾 , equate the partial derivative of 

loss function with respect to 𝜃𝑘  to zero. Iterating this process until the error converges, 

the importance of each meta-path is obtained. The meta-paths with negative or too small 

value will be discarded, which represent conflict and low correlative semantic mean-

ings to the following tasks. Weights are computed by normalizing the importance val-

ues of reduced meta-paths. In this way, the weighted combination of independent se-

mantics specified by meta-paths is to measure the similarities among nodes in hetero-

geneous information network, which can be easy-to-use for the downstream tasks, e.g., 

classification. 

5 Experiments 

5.1 Datasets 

The proposed WMPE is evaluated on two real-world datasets: DBLP and IMDB.  

DBLP is a bibliographical network in computer science, which includes four types 

of notes: paper (P), author (A), venue (V), and term (T). We construct two subsets of 

DBLP. DBLP_1 contains 240 venues (30 venues for each area), 189,378 authors, 

217,764 papers and 263,332 terms in eight research areas. Because of the bias that a 

few authors publish most of the papers, DBLP_2 extracts 20 venues, 9,737 authors 
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(publish at least five papers), 12,098 papers, and 9,936 terms in four research areas. To 

evaluate the methods, the research area is taken as ground truth. 

IMDB is a movie network consisting of five types of notes: movie (M), actor (A), 

director (D), year (Y) and genre (G). There are 5000 movies, 2342 actors, 879 directors 

and 67 genres, where we use the movie genre as ground truth.  

5.2 Baselines and Evaluation Metrics 

We compare the proposed WMPE framework with the state-of-the-art baseline models:  

DeepWalk, LINE, HIN2Vec and metpath2vec. DeepWalk and LINE are designed for 

homogeneous network embedding. HIN2Vec c and metpath2vec aim at heterogeneous 

information network, but all nodes and relationships are mapped into the same feature 

space.  

Furthermore, the two popular metrics: Accuracy (Acc) and macro F1-score (F1) are 

adopted to assess the classification results. 

5.3 Meta-path Filtration 

A set of meta-paths are generated and the corresponding importance values are also 

learned respectively on DBLP and IMDB. The results are shown in Table 1, and the 

preserved meta-paths are indicated in bold. 

Table 1. Results of meta-path generation and the importance.  

 Meta-path Length Importance 

DBLP 

author-paper-author (APA) 

author-paper-paper-author (APPA) 

author-paper-paper-paper-author (APPPA) 

author-paper-author-paper-author (APAPA) 

author-paper-term-paper-author (APTPA) 

author-paper-venue-paper-author (APVPA) 

2 

3 

4 

4 

4 

4 

0.13 

0.09 

0.05 

0.11 

0.31 

0.78 

IMDB 

movie-actor-movie (MAM) 

movie-director-movie (MDM) 

movie-year-movie (MYM) 

movie-actor- movie-director-movie (MAMDM) 

movie-actor-movie-year-movie (MAMYM) 

movie-director-movie -year-movie (MDMYM) 

2 

2 

2 

4 

4 

4 

0.17 

0.44 

-0.30 

0.03 

-0.46 

-0.42 

For DBLP dataset, we set the maximum length as 4，and the meta-paths are generated 

in the form of  𝑎𝑢𝑡ℎ𝑜𝑟 −∗ −𝑎𝑢𝑡ℎ𝑜𝑟, in which both the start node type and end node 

type are authors. The order of importance for each meta-path in DBLP is as follow: 

APVPA > APTPA >APA>APAPA>APPA>APPPA. It turns out that, compared with 

other relations, the authors publishing papers at the same conference are more likely to 

be in the same field. 

For IMDB dataset, we set the maximum length as 4，and the meta-paths are gener-

ated in the form of  𝑚𝑜𝑣𝑖𝑒 −∗ −𝑚𝑜𝑣𝑖𝑒. Since the meta-paths are undirected, reciprocal 

paths are filtrated away. We note that all the importance values of the meta-path includ-

ing the type of year (Y) are negative, which means there is no connection between the 
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year a film is made and its genre. Therefore, those meta-paths will disturb the following 

tasks.  

5.4 Results of Classification 

We conduct a classification experiment using KNN classifier to verify the effectiveness 

of the algorithm. The embeddings of nodes in networks are represented by 128-dimen-

sion vectors for all the methods. Randomly select 2%, 4% and 6% of the labelled nodes 

for weight learning respectively. Due to the random initialization, we repeat the base-

lines 10 times and report the average performances in Table 2, in which a larger value 

implies a better effect. 

As can be seen, on the whole, WMPE outperforms the other baselines on three da-

tasets for two metrics, which validate the effectiveness of our proposed model. In terms 

of datasets, all methods on DBLP_2 achieve best results. We conclude that DBLP_2, 

compared with DBLP_1, discards large numbers of authors who publish only a few 

papers to void the sparsity of network, which is instrumental for classification. The 

worst overall performances are on IMDB. One explanation could be that an actor/ac-

tress or director does not exactly associated with a certain movie genre, which can be 

confirmed from weights of the meta-paths including the type actor. Compared to the 

best performances of baselines on DBLP_1, a large-scale and biased network, WMPE 

achieves the improvements of 5.55% Acc, and 6.31% F1 over metapath2vec. 

For baselines, the observations in table 2 show that the results of heterogeneous net-

work embedding models (HIN2Vec and metpath2vec) are generally better than that of 

the homogeneous (DeepWalk and LINE). DeepWalk and LINE cannot use the meta-

paths and the results will not change, although the labelled nodes are increasing. Since 

meta-paths are introduced to represent the semantic information among different types 

of nodes. Besides, because of discarding the conflicting and irrelevant meta-paths and 

assigning higher weights to the effective meta-paths, our method WMPE is superior to 

all the methods above. 

5.5 Impact of Different Meta-Paths 

We also conduct an experiment to analyze the effect of different meta-paths and the 

results are given in Fig. 2. 

As shown in Fig. 2(a) and Fig. 2(b), the effect of the experiment is consistent with 

the importance of the meta-paths that the meta-path with the highest weight gets the 

best results. This suggests that the relation of publishing papers in common venues is 

more sensitive than the relations of sharing common terms and co-author to research 

areas.  

For IMDB dataset, shown in Fig. 2(c), we add a meta-path MYM to compare with 

the preserved ones. The accuracy of MDM is better than that of MAM. That is, direc-

tors, compared with actors/actresses, are more likely to have their inherent genres. We 

note that, increasing meta-paths can improve the accuracy in general, but it does not 

mean the more, the better. A possible reason is that some meta-paths may contain noisy 

or conflicting information, e.g., MYM. 
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Table 2. Performance comparison of classification. The best results are indicated in bold. 

Method Metric 
DBLP_1 DBLP_2 IMDB 

2% 4% 6% 2% 4% 6% 2% 4% 6% 

DeepWalk 
Acc 65.38 65.38 65.38 74.32 74.32 74.32 53.20 53.20 53.20 

F1 62.71 62.71 62.71 70.10 70.10 70.10 52.02 52.02 52.02 

LINE 
Acc 81.74 81.74 81.74 85.23 85.23 85.23 68.27 68.27 68.27 

F1 80.43 80.43 80.43 81.82 81.82 81.82 65.54 65.54 65.54 

HIN2Vec 
Acc 83.61 84.67 84.73 90.09 91.87 93.04 72.45 72.68 73.26 

F1 84.27 85.40 85.62 88.34 89.34 90.73 71.78 71.88 72.09 

metapath2vec 
Acc 86.93 86.21 87.64 93.73 95.49 95.55 72.56 72.56 73.42 

F1 83.57 84.07 86.32 91.65 91.64 91.89 70.30 70.30 71.35 

WMPE 
Acc 90.76 91.73 91.89 93.57 94.29 95.58 74.24 75.09 78.22 

F1 89.01 90.38 91.23 92.10 92.66 93.21 74.93 76.32 77.06 

 

   

(a)DBLP_1 (b)DBLP_2 (c)IMDB 

Fig. 2. Impact of meta-paths on different datasets 

5.6 Parameter 𝒌𝒓 

Parameter 𝑘𝑟 is related to the error of approximate commuting embedding. A proper 

value can not only ensure the classification effectiveness, but also reduce the learning 

time of network embedding. Fig. 3 illustrates the influence of 𝑘𝑟 on classification ac-

curacy. With the increase of 𝑘𝑟, the accuracy curve is rising, but tend to be smooth. 

According to the curve, 𝑘𝑟 is set to 60, 50 and 40 on dataset DBLP_1, DBLP_2 and 

IMDB respectively. 
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Fig. 3. Classification results with different 𝑘𝑟 

6 Conclusion 

This paper presents a weighted meta-path embedding learning for heterogenous infor-

mation networks, called WMPE, which can easily integrate incompatible semantics by 

a weighted combination of the effective meta-paths. Also, a nearly-linear approximate 

approach reduces the time complexity in embedding process. Experimental results on 

two real-world datasets prove that the proposed WMPE is effective and feasible. 
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