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Abstract 

 

I. INTRODUCTION  

Clinical prediction models play an 

increasingly crucial function in current 

medical care, by means of informing 

healthcare professionals, sufferers and their 

family about outcome dangers, with the 

purpose to facilitate (shared) clinical choice 

making and enhance fitness outcomes. 

Diagnostic prediction fashion’s purpose to 

calculate a character's hazard that an ailment 

is already present, at the same time as 

prognostic prediction fashions intention to 

calculate the hazard of specific heath states 

happening inside the destiny. This article 

serves as a primer for diagnostic and 

prognostic scientific prediction fashions, by 

discussing the simple terminology, some of 

the inherent demanding situations, and the 

need for validation of predictive overall 

performance and the assessment of impact of 

these models in scientific care.  Prognostics 

refer to the estimation of the remaining useful 

life (RUL) of degrading systems and 

components based on the current health 

condition.  

 

II. DEFINITIONS AND DIFFERENCES 

 

A prognostic model is a formal combination 

of multiple predictors from which risks of a 

specific endpoint can be calculated for 

individual patients. For an individual with a 

given state of health, a prognostic model 

converts the combination of predictor values 

to an estimate of the risk of experiencing a 

specific endpoint within a specific period. 

The key difference among diagnostic and 

prognostic prediction models is inside the 

temporal courting be- tween the instant of 

prediction and the final results of interest. 

Prognostic fashions are vital at distinct stages 

in pathways leading to enhancements in 

health. The use of prognostic models ties in 

with the strong motion in the direction of 

stratified medicine, where choices 

concerning treatment alternatives are 

knowledgeable through an individual's 

profile of prognostic elements. In a 

diagnostic prediction version, the final results 

of interest are the modern fitness condition of 

the patient in the meanwhile of prediction. 

The natural observe design for diagnostic 

prediction fashions is a cross-sectional 

observe, in which statistics are accumulated 

from a set of patients suspected of having the 

goal situation, and measures each the 

outcome (goal situation popularity: presence 

as opposed to absence) and predictors on the 

equal second in time or with little or no time 

in among. An exception is the express use of 

observe-up to have a look at whether ailment 

happens in subjects. In whom the reference 

general cannot be completed, e.g., in imaging 

research in which it is impossible to perform 

a biopsy in a subject in which no lesion is 

detected for the duration of imaging (is 

predicated on the idea that detection of goal 

circumstance at follow-up accurately 

displays the target condition at moment of 

prediction). For prognostic prediction 

models, the focus is on predicting a future 

health final result that happens after the 

moment of prediction, additionally the use of 

predictors to be had in the meanwhile of 

prediction. Likewise, diagnostic models, 

which are commonly developed using 

logistic regression modeling or some 

variation thereof, may also suffer from 

incomplete outcome measurement.  
  

III. PREDICTION MODEL 

DEVELOPMENT, PERFORMANCE AND 

IMPACT 

 

The improvement of a diagnostic or 

prognostic version calls for numerous not 

unusual evaluation steps and decisions to be 



 

taken by way of the modeler. Some doctors 

believe that no prognostic version derived 

from one population can be generalized to 

patients drawn from some other, 27 within 

the same way that a few deny that scientific 

trials or overviews can tell man or woman 

choices approximately treatment. In brief, 

after the objectives of prediction are 

determined (e.g., outcome, target population 

and meant moment of use) and the dataset is 

prepared, constructing the prediction version 

requires decisions concerning the modeling 

framework (e.g., logistic regression), the 

candidate predictors to observe, a way to 

code the predictors and decide the practical 

form of the connection between the 

predictors and final results (e.g., a nonlinear 

impact of a continuous predictor, which 

include affected person age, using a spline 

feature), managing missing statistics in 

predictor and out- come, and in all likelihood 

choice amongst candidate predictors (e.g., 

the use of backward elimination in a 

regression model).   
 

 

 

 

 

 

 

 

 

 

 

III. APPLICATION ON C-MAPSS DATA 

SET 

A. Overview of the System and Data Set 

In this section, the proposed JPM is 

illustrated and evaluated through the 

benchmarking C-MAPSS data set [25]. C-

MAPSS is a tool developed by NASA for 

simulating a realistic large commercial 

turbofan engine that is monitored by multiple 

sensors. The C-MAPSS data set generated in 

[25] has been widely used as a benchmark 

system with multiple degradation signals in 

the prognostics and health management 

(PHM) field. C-MAPSS simulates an engine 

model of the 90 000-lb thrust with altitudes 

ranging from sea level to 40 000 ft, Mach 

numbers from 0 to 0.90, and sea-level 

temperatures from −60 ◦F to 103 ◦F. Users 

can adjust the conditions of aircraft altitude, 

Mach number, and throttle resolver angle to 

simulate different environmental conditions 

[25]. There are 14 inputs to simulate various 

degradation scenarios. The outputs include 

various sensor response surfaces and 

operability margins. A total of 21 variables 

out of 58 different outputs available from the 

model are used for analysis, as shown in 

Table I. To consider unit-to-unit variability, 

an unknown variance for initial wear level 

and a random noise were introduced. 

 

A failure threshold for a hidden HI that is not 

accessible to users is predefined, beyond 

which the unit is considered failed. A total of 

four data sets with the corresponding failure 

modes and operational conditions were 

generated. In this article, we only consider 

two of the four data sets, FD001 and FD003, 

which are commonly used in performance 

evaluation and comparison. The FD001 data 

set has a single-failure mode (HPC 

degradation) and a single-operating 

condition, while the FD003 data set has one 

operating condition but two fault modes 

(HPC and fan degradation). For FD002 and 

FD004, there are six operating conditions 



 

mixed together, all of which affect the sensor 

values and the degradation process. It is 

inappropriate to estimate RUL based only on 

the 21-sensor data. Therefore, these two data 

sets are not considered here. For each data set 

considered in this article, there are 100 

training units and 100 testing units. In the 

training data set, the fault grows in magnitude 

until system failure. In the test data set, the 

time series ends sometimes prior to system 

failure. A file of the actual remaining lifetime 

of the 100 testing units is also included for 

each data set. Sensor readings from the 21 

outputs are collected at each observation 

epoch for each unit. The prognostic model is 

developed based on the available degradation 

patterns of the 100 training units and the 

testing data set is used for performance 

evaluation. 

 

B. Variable Selection and Data 

Preprocessing 

Among these 21 outputs, 14 outputs are 

highly related to the degradation process with 

an increasing or decreasing trend, while the 

other outputs are almost unchanged. 

Therefore, only these 14 degradation signals 

are included for further selection. The 

correlation analysis shows that there exist 

high correlations among these outputs (up to 

0.96 for certain pairs). Signals with low 

correlation exhibit different signal patterns 

and involve different characteristics of the 

same unit. Therefore, the outputs are selected 

in such a way that the data show an obvious 

degradation trend and the pair-wise 

correlations of the selected outputs are as low 

as possible. To select the outputs based on the 

correlation, the hierarchical clustering 

algorithm is used, where (1 − correlation 

coefficient) is used as the distance or 

dissimilarity measure. The clustering 

dendrogram is shown in Fig. 5, where five 

clusters are obtained with a correlation 

threshold of 0.75. For each cluster, we 

randomly select an output, and the final 

outputs selected for prediction are Nc, T24, 

BPR, htBleed, and T30. The typical 

degradation forms of the selected sensor 

signals are shown in Fig. 6. All of these 

signals show an exponential functional form, 

which has been widely used to model 

cumulative damage processes [24], [28], 

[29]. Therefore, we use the exponential 

function to describe the degradation process 

of the turbofan engine. Following Liu et al. 

[1], we first perform log-transformation to 

the data and then apply linear models to the 

log-transformed data. Specifically, the 

quadratic polynomial function is assumed for 

the log-transformed data of each selected 

variable. 
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