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Abstract

Non-normal modal logics, interpreted on neighbourhood models which generalise the usual relational

semantics, have found application in several areas, such as epistemic, deontic, and coalitional reasoning.

We present here preliminary results on reasoning in a family of modal description logics obtained by

combining 𝒜ℒ𝒞 with non-normal modal operators. First, we provide a framework of terminating, correct,

and complete tableau algorithms to check satisfiability of formulas in such logics with the semantics

based on varying domains. We then investigate the satisfiability problems in fragments of these languages

obtained by restricting the application of modal operators to formulas only, and interpreted on models

with constant domains, providing tight complexity results.
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1. Introduction

Contexts involving epistemic and doxastic [1, 2, 3], agency-based [4, 5] and coalitional [6, 7], as

well as deontic [8, 9, 10], reasoning capabilities populate the wide spectrum of settings where

modal logics have found natural applications. In such scenarios, modal operators can be used to

represent and reason about what agents, or groups of agents, respectively know, believe, have

the capability, or have the permission, to bring about.

The semantics of modal operators is usually given in terms of relational models, based on

frames consisting of a set of possible worlds equipped with suitable accessibility relations.

However, all the modal systems interpreted by means of this kind of semantics, known as

normal, validate principles that have been considered problematic or debatable for the afore-

mentioned applications, leading to counterintuitive or unacceptable conclusions. Among the

unpleasant features discussed in the literature, one encounters for instance the problem of

logical omniscience [3], as well as a number of so-called paradoxes in the representation of

agents’ abilities [5] and obligations [11, 12, 13].

To avoid the unwanted consequences of the relational semantics, several non-normal modal

logics have been proposed and studied, tracing back to the seminal works by C.I. Lewis [14],

Lemmon [15], Kripke [16], Scott [17], Montague [18], Segerberg [19], and Chellas [20]. The
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semantics of such systems can be given in terms of neighbourhood models, generalisations of

the relational ones that were first introduced by Scott [17] and Montague [18]. In this setting, a

frame consists of a set of worlds, each of which is associated with a set of subsets of worlds.

Since a subset of worlds can be thought as a proposition (that is true in those worlds), this

means that every world in a neighbourhood model is assigned to a set of propositions, those

considered necessary with respect to that world. This semantics both generalises the relational

one, and avoids the drawbacks of the latter, since the modal principles validated on relational

frames that are deemed as problematic for epistemic, coalitional or deontic applications do not

hold in general on neighbourhood models.

Non-normal modalities have been widely investigated as a way to extend propositional

logic. A further line of research focuses on the behaviour of modal operators interpreted on

neighbourhood frames in combination with first-order logic. In this direction, a few works have

provided completeness results for first-order non-normal modal logics [21, 22]. In addition, non-

normal modal extensions of description logics, seen as fragments of first-order logic with a good

trade-off between expressive power and computational complexity, have been considered for

knowledge representation applications [23, 24], also in multi-agent coalitional settings [25, 26].

In this paper, we investigate satisfiability of non-normal modal extensions of description

logics. In particular, we study the logics characterised by the class of all neighbourhood frames

(E), supplemented neighbourhood frames (M), neighbourhood frames closed under intersection

(C), and neighbourhood frames containing the unit (N), and combine them with the prototypical

𝒜ℒ𝒞 description logic. We provide a framework of terminating, correct, and complete tableau

algorithms to check satisfiability in such logics interpreted in neighbourhood models with

varying domains (in this kind of semantics, the domains of the interpretations at each world

can differ; cf. Section 2 for details). We then investigate the satisfiability problems in fragments

of these languages obtained by restricting the application of modal operators to formulas only,

and provide complexity upper bounds with constant domains (in this case the domains of the

interpretations at every world are the same). We leave satisfiability checking procedures for

non-restricted languages interpreted on models with constant domain as open problems.

2. Preliminaries

In this section, we provide preliminary definitions for non-normal modal description logics,

first introducing their syntax, and then giving their semantics based on neighbourhood models.

Syntax Let NC and NR be countably infinite and pairwise disjoint sets of concept names and

role names respectively. An ML𝑛𝒜ℒ𝒞 concept is an expression of the form

𝐶 ::= 𝐴 | ¬𝐶 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 | 2𝑖𝐶,

where 𝐴 ∈ NC, 𝑟 ∈ NR, and 2𝑖, with 𝑖 ∈ 𝐼 = {1, . . . , 𝑛}, are modal operators called boxes. A

concept inclusion (CI ) is an expression of the form 𝐶 ⊑ 𝐷, where 𝐶,𝐷 are ML𝑛𝒜ℒ𝒞 concepts.

An ML𝑛𝒜ℒ𝒞 formula takes the form

𝜙 ::= 𝐶 ⊑ 𝐷 | ¬𝜙 | 𝜙 ∧ 𝜙 | 2𝑖𝜙,



where 𝑖 ∈ 𝐼 . We will use the following standard definitions for concepts: ⊥ := 𝐴 ⊓ ¬𝐴,

⊤ := ¬⊥; ∀𝑟.𝐶 := ¬∃𝑟.¬𝐶; (𝐶 ⊔ 𝐷) := ¬(¬𝐶 ⊓ ¬𝐷); 3𝑖𝐶 := ¬2𝑖¬𝐶 (operators 3𝑖 are

called diamonds). Concepts of the form 2𝑖𝐶 , 3𝑖𝐶 are called modalised concepts. Analogous

conventions also hold for formulas, for which we set true := (⊥ ⊑ ⊤).

Semantics A neighbourhood frame, or simply frame, is a pair ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼), where

𝒲 is a non-empty set of worlds and, for each 𝑖 ∈ 𝐼 = {1, . . . , 𝑛}, 𝒩𝑖 : 𝒲 → 22
𝒲

is called

a neighbourhood function. A frame is: supplemented if, for all 𝑖 ∈ 𝐼 , 𝑤 ∈ 𝒲 , 𝛼, 𝛽 ⊆ 𝒲 ,

𝛼 ∈ 𝒩𝑖(𝑤) and 𝛼 ⊆ 𝛽 implies 𝛽 ∈ 𝒩𝑖(𝑤); closed under intersection if, for all 𝑖 ∈ 𝐼 , 𝑤 ∈ 𝒲 ,

𝛼, 𝛽 ⊆ 𝒲 , 𝛼 ∈ 𝒩𝑖(𝑤) and 𝛽 ∈ 𝒩𝑖(𝑤) implies 𝛼 ∩ 𝛽 ∈ 𝒩𝑖(𝑤); and contains the unit if, for

all 𝑖 ∈ 𝐼 , 𝑤 ∈ 𝒲,𝒲 ∈ 𝒩𝑖(𝑤). An ML𝑛𝒜ℒ𝒞 varying domain neighbourhood model, or simply

model, based on a neighbourhood frame ℱ is a pair ℳ = (ℱ , ℐ), where ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼) is a

neighbourhood frame and ℐ is a function associating with every 𝑤 ∈ 𝒲 an 𝒜ℒ𝒞 interpretation

ℐ𝑤 = (Δ𝑤, ·ℐ𝑤), with non-empty domain Δ𝑤, and where ·ℐ𝑤 is a function such that: for

all 𝐴 ∈ NC, 𝐴ℐ𝑤 ⊆ Δ𝑤; for all 𝑟 ∈ NR, 𝑟ℐ𝑤 ⊆ Δ𝑤×Δ𝑤. An ML𝑛𝒜ℒ𝒞 constant domain

neighbourhood model is defined in the same way, except that, for all 𝑤,𝑤′ ∈ 𝒲 , we have that

Δ𝑤 = Δ𝑤′ . Given a model ℳ = (ℱ , ℐ) and a world 𝑤 ∈ 𝒲 of ℱ (or simply 𝑤 in ℱ ), the

interpretation 𝐶ℐ𝑤
of a concept 𝐶 in 𝑤 is defined as:

(¬𝐷)ℐ𝑤 = Δ𝑤 ∖𝐷ℐ𝑤 ,

(𝐷 ⊓ 𝐸)ℐ𝑤 = 𝐷ℐ𝑤 ∩ 𝐸ℐ𝑤 ,

(∃𝑟.𝐷)ℐ𝑤 = {𝑑 ∈ Δ𝑤 | ∃𝑒 ∈ 𝐷ℐ𝑤 : (𝑑, 𝑒) ∈ 𝑟ℐ𝑤},
(2𝑖𝐷)ℐ𝑤 = {𝑑 ∈ Δ𝑤 | J𝐷Kℳ𝑑 ∈ 𝒩𝑖(𝑤)},

where, for all 𝑑 ∈
⋃︀
𝑤∈𝒲 Δ𝑤, the set J𝐷Kℳ𝑑 = {𝑣 ∈ 𝒲 | 𝑑 ∈ 𝐷ℐ𝑣} is called the truth set of 𝐷

with respect to 𝑑. We say that a concept 𝐶 is satisfied in ℳ if there is 𝑤 in ℱ such that 𝐶ℐ𝑤 ̸= ∅,

and that 𝐶 is satisfiable (over varying or constant neighbourhood models, respectively) if there

is a (varying or constant domain, respectively) neighbourhood model in which it is satisfied.

The satisfaction of an ML𝑛𝒜ℒ𝒞 formula 𝜙 in 𝑤 of ℳ, written ℳ, 𝑤 |= 𝜙, is defined as follows:

ℳ, 𝑤 |= 𝐶 ⊑ 𝐷 iff 𝐶ℐ𝑤 ⊆ 𝐷ℐ𝑤 ,

ℳ, 𝑤 |= ¬𝜓 iff ℳ, 𝑤 ̸|= 𝜓,

ℳ, 𝑤 |= 𝜓 ∧ 𝜒 iff ℳ, 𝑤 |= 𝜓 and ℳ, 𝑤 |= 𝜒,

ℳ, 𝑤 |= 2𝑖𝜓 iff J𝜓Kℳ ∈ 𝒩𝑖(𝑤),

where J𝜓Kℳ = {𝑣 ∈ 𝒲 | ℳ, 𝑣 |= 𝜓} is the truth set of 𝜓. As a consequence of the above

definition, we obtain the following condition for diamond formulas: ℳ, 𝑤 |= 3𝑖𝜓 iff J¬𝜓Kℳ /∈
𝒩𝑖(𝑤). Given a neighbourhood frame ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼) and a neighbourhood model ℳ =
(ℱ , ℐ), we say that 𝜙 is satisfied in ℳ if there is 𝑤 ∈ 𝒲 such that ℳ, 𝑤 |= 𝜙, and that 𝜙
is satisfiable (over varying or constant domain neighbourhood models, respectively) if it is

satisfied in some (varying or constant domain, respectively) neighbourhood model.

Given a class of frames 𝒞, by the ML𝑛𝒜ℒ𝒞 formula satisfiability problem on (varying or constant

domain, respectively) neighbourhood models based on a frame in 𝒞 we mean the problem of



deciding whether an ML𝑛𝒜ℒ𝒞 formula is satisfied in a (varying or constant domain, respectively)

neighbourhood model based on a frame in 𝒞. In the following, let Log = {E,M,C,N}. Given

L ∈ Log, the L𝑛𝒜ℒ𝒞 formula satisfiability problem on (varying or constant domain, respectively)

neighbourhood models is the ML𝑛𝒜ℒ𝒞 formula satisfiability problem on (varying or constant

domain, respectively) neighbourhood models based on a frame in the class of:

• all neighbourhood frames, for L = E;

• supplemented neighbourhood frames, for L = M;

• neighbourhood frames closed under intersection, for L = C; and

• neighbourhood frames containing the unit, for L = N.

3. Tableaux for Non-normal Modal Description Logics

In this section, we provide terminating, sound and complete tableau algorithms to check

satisfiability of formulas in varying domain neighbourhood models. The notation partly adheres

to that of Gabbay et al. [27], while the model construction in the soundness proof is based on

the strategy of Dalmonte et al. [28].

We require the following preliminary notions. For a concept or formula 𝛾, we denote by

¬̇𝛾 the negation of 𝛾 put in negation normal form (NNF ), defined as usual. Given an ML𝑛𝒜ℒ𝒞
formula 𝜙, we assume without loss of generality that 𝜙 is in NNF, it contains CIs only of the

form ⊤ ⊑ 𝐶 , and every concept occurring in 𝜙 is also in NNF. We define the weight |𝐶| of a

concept 𝐶 in NNF as follows: |𝐴| = |¬𝐴| = 0; |∃𝑟.𝐷| = |∀𝑟.𝐷| = |3𝑖𝐷| = |2𝑖𝐷| = |𝐷|+ 1;

|𝐷 ⊓ 𝐸| = |𝐷 ⊔ 𝐸| = |𝐷| + |𝐸| + 1. The weight |𝜙| of a formula 𝜙 in NNF is defined as:

|(𝐶 ⊑ 𝐷)| = |¬(𝐶 ⊑ 𝐷)| = 0; 2𝑖𝜓 = |𝜓|+1; |𝜓∧𝜒| = |𝜓∨𝜒| = |𝜓|+ |𝜒|+1. Observe that,

for a concept or formula 𝛾, we have that |𝛾| = |¬̇𝛾|. We denote by con(𝜙) and for(𝜙) the set of

subconcepts and subformulas of 𝜙, respectively, and then we set con¬̇(𝜙) = con(𝜙) ∪ {¬̇𝐶 |
𝐶 ∈ con(𝜙)} and for¬̇(𝜙) = for(𝜙) ∪ {¬̇𝜓 | 𝜓 ∈ for(𝜙)}. The set rol(𝜙) is the set of role

names occurring in 𝜙. Let Fg(𝜙) = for¬̇(𝜙) ∪ con¬̇(𝜙) ∪ rol(𝜙). Note that, by our assumption

on the form of CIs in 𝜙, we have ⊤ ∈ con¬̇(𝜙).
Moreover, let NV be a countable set of variables, well-ordered by the relation <, and let NL

be a countable set of labels. Given an ML𝑛𝒜ℒ𝒞 formula 𝜙, an 𝑛-labelled constraint for 𝜙 takes the

form 𝑛 : 𝜓, or 𝑛 : 𝐶(𝑥), or 𝑛 : 𝑟(𝑥, 𝑦), where 𝑛 ∈ NL, 𝜓 ∈ for¬̇(𝜙), 𝑥 ∈ NV, 𝐶 ∈ con¬̇(𝜙), and

𝑟 ∈ rol(𝜙). An 𝑛-labelled constraint system for 𝜙 is a set 𝑆𝑛 of 𝑛-labelled constraints for 𝜙. (A

labelled constraint for 𝜙 is an 𝑛-labelled constraint for 𝜙, for some 𝑛 ∈ NL, and similarly for a

labelled constraint system for 𝜙). A completion set T is a non-empty union of labelled constraint

system for 𝜙, and we set LT = {𝑛 ∈ NL | 𝑆𝑛 ∈ T}.

Concerning variables, we adopt the following terminology. A variable 𝑥 occurs in 𝑆𝑛 if 𝑆𝑛
contains 𝑛-labelled constraints of the form 𝑛 : 𝐶(𝑥) or 𝑛 : 𝑟(𝜏, 𝜏 ′), where 𝜏 = 𝑥, or 𝜏 ′ = 𝑥,

and 𝑛 ∈ NL. In addition, 𝑥 is said to be fresh for 𝑆𝑛 if 𝑥 does not occur in 𝑆𝑛 and 𝑥 > 𝑦, for

every 𝑦 that occurs in 𝑆. (These notions can be used with respect to T, whenever 𝑆𝑛 ⊆ T).

Without loss of generality, we assume that, whenever 𝑥 occurs in 𝑆𝑛, the 𝑛-labelled constraint

𝑛 : ⊤(𝑥) is in 𝑆𝑛 . Also, if 𝑛 : 𝑟(𝑥, 𝑦) ∈ 𝑆𝑛, we call 𝑦 an 𝑟-successor of 𝑥 with respect to 𝑆𝑛.



Finally, given variables 𝑥, 𝑦 in an 𝑛-labelled constraint system 𝑆𝑛, we say that 𝑥 is blocked by 𝑦
in 𝑆𝑛 if 𝑥 > 𝑦 and {𝐶 | 𝑛 : 𝐶(𝑥) ∈ 𝑆𝑛} ⊆ {𝐶 | 𝑛 : 𝐶(𝑦) ∈ 𝑆𝑛}.

A completion set T contains a clash if {𝑚 : 𝜓,𝑚 : ¬𝜓} ⊆ T, or {𝑚 : 𝐶(𝑥),𝑚 : ¬𝐶(𝑥)} ⊆
T, for some 𝑚 ∈ NL, and formula 𝜓 or concept 𝐶 . A completion set with no clash is clash-free.

Given L ∈ Log, a completion set is L𝑛𝒜ℒ𝒞-complete if no L𝑛𝒜ℒ𝒞-rule from Figure 1 is applicable

to T, where 𝛾𝑗 is either 𝜓𝑗 ∈ for¬̇(𝜙) or 𝐶𝑗(𝑥𝑗), with 𝐶𝑗 ∈ con¬̇(𝜙), for 𝑗 = 1, . . . , 𝑘, and 𝛿
is either 𝜒 ∈ for¬̇(𝜙) or 𝐷(𝑦), with 𝐷 ∈ con¬̇(𝜙), with respect to the following application

conditions associated to each L𝑛𝒜ℒ𝒞-rule:

(R∧) {𝑛 : 𝜓, 𝑛 : 𝜒} ̸⊆ T; (R⊓) {𝑛 : 𝐶(𝑥), 𝑛 : 𝐷(𝑥)} ̸⊆ T;

(R∨) {𝑛 : 𝜓, 𝑛 : 𝜒} ∩T = ∅; (R⊔) {𝑛 : 𝐶(𝑥), 𝑛 : 𝐷(𝑥)} ∩T = ∅;

(R∃) 𝑥 is not blocked by any variable in 𝑆𝑛, there is no 𝑧 such that {𝑛 : 𝑟(𝑥, 𝑧), 𝑛 : 𝐶(𝑧)} ⊆ T,

and 𝑦 is the <-minimal variable fresh for 𝑆𝑛;

(R∀) 𝑛 : 𝐶(𝑦) /∈ T;

(R=) 𝑥 occurs in an 𝑛-labelled constraint in T and 𝑛 : 𝐶(𝑥) /∈ T;

(R̸=) 𝑥 is the <-minimal variable fresh for 𝑆𝑛, and there is no 𝑦 such that 𝑛 : ¬̇𝐶(𝑦) ∈ T;

(RL) 𝑚 is fresh for T, and there is no 𝑜 ∈ NL such that {𝑜 : 𝛾1, . . . , 𝑜 : 𝛾𝑘, 𝑜 : 𝛿} ⊆ T, or

{𝑜 : ¬̇𝛾𝑗 , 𝑜 : ¬̇𝛿} ⊆ T, for some 𝑗 ≤ 𝑙, where 𝑘 and 𝑙 are as in Figure 1.

The L𝑛𝒜ℒ𝒞-rules essentially state how to extend a completion set on the basis of the infor-

mation contained in it. Branching rules entail a non-deterministic choice in the expansion of

the completion set. For each L ∈ Log, we now define an algorithm based on L𝑛𝒜ℒ𝒞-rules for

checking the L𝑛𝒜ℒ𝒞 formula satisfiability. We then prove that the algorithm terminates for every

formula 𝜙, and that it is sound and complete with respect to L𝑛𝒜ℒ𝒞 satisfiability.

Definition 1 (L𝑛𝒜ℒ𝒞 tableau algorithm for 𝜙). Given an ML𝑛𝒜ℒ𝒞 formula 𝜙, the L𝑛𝒜ℒ𝒞 tableau

algorithm for 𝜙 runs as follows: set the initial completion set T𝜙 = {0 : 𝜙, 0 : ⊤(𝑥)}, and expand

it by means of the L𝑛𝒜ℒ𝒞-rules until a clash or an L𝑛𝒜ℒ𝒞-complete completion set is obtained.

In the rest of this section, we prove termination, soundness and completeness of the tableau

algorithms given above. We start by showing that the L𝑛𝒜ℒ𝒞 tableau algorithm terminates.

Theorem 1 (Termination). Having started on the initial completion set T𝜙 = {0 : 𝜙, 0 : ⊤(𝑥)},

the L𝑛𝒜ℒ𝒞 tableau algorithm for 𝜙 terminates after at most 2𝑝(|Fg(𝜙)|) steps, where 𝑝 is a polynomial

function.

Proof. We first require the following claims.

Claim 1.1. Let T be a completion set obtained by applying the L𝑛𝒜ℒ𝒞 tableau algorithm for 𝜙. For

each 𝑛 ∈ LT, the number of 𝑛-labelled constraints for 𝜙 in T does not exceed 2𝑞(|Fg(𝜙)|), where 𝑞
is a polynomial function.



(R∧) 𝑛 : 𝜓 ∧ 𝜒 𝑛 : 𝜓 , 𝑛 : 𝜒 (R⊓) 𝑛 : 𝐶 ⊓𝐷(𝑥) 𝑛 : 𝐶(𝑥) , 𝑛 : 𝐷(𝑥)

(R∨) 𝑛 : 𝜓 ∨ 𝜒
𝑛 : 𝜓

𝑛 : 𝜒

(R⊔) 𝑛 : 𝐶 ⊔𝐷(𝑥)

𝑛 : 𝐶(𝑥)

𝑛 : 𝐷(𝑥)

(R∃) 𝑛 : ∃𝑟.𝐶(𝑥) 𝑛 : 𝑟(𝑥, 𝑦) , 𝑛 : 𝐶(𝑦) (R∀) 𝑛 : ∀𝑟.𝐶(𝑥) , 𝑛 : 𝑟(𝑥, 𝑦) 𝑛 : 𝐶(𝑦)

(R=) 𝑛 : ⊤ ⊑ 𝐶 𝑛 : 𝐶(𝑥) (R ̸=) 𝑛 : ¬(⊤ ⊑ 𝐶) 𝑛 : ¬̇𝐶(𝑥)

(RL) 𝑛 : 2𝑖𝛾1, . . . , 𝑛 : 2𝑖𝛾𝑘, 𝑛 : 3𝑖𝛿

𝑚 : 𝛾1, . . . ,𝑚 : 𝛾𝑘,𝑚 : 𝛿 (0)

𝑚 : ¬̇𝛾1,𝑚 : ¬̇𝛿 (1)

...

𝑚 : ¬̇𝛾𝑘,𝑚 : ¬̇𝛿 (𝑙)

Figure 1: L𝑛
𝒜ℒ𝒞-rules, where: for L = E, 𝑘 = 𝑙 = 1; for L = M, 𝑘 = 1 and 𝑙 = 0; for L = C, 𝑘 ≥ 1

and 𝑙 = 𝑘; for L = N, 𝑘 = 𝑙 = 1 or 𝑘 = 𝑙 = 0;

Proof of Claim. We remark that, for each 𝑆𝑛 ⊆ T, the L𝑛𝒜ℒ𝒞 tableaux algorithm behaves exactly

like a standard (non-modal) 𝒜ℒ𝒞 tableaux algorithm (cf. e.g. [27, Theorem 15.4], noting also

that in our case we do not have to deal with individual names).

Claim 1.2. Let T be a completion set obtained by applying the L𝑛𝒜ℒ𝒞 tableau algorithm for 𝜙.

For L ∈ {E,M,N}, |LT| ≤ |Fg(𝜙)|2. For L = C, |LT| ≤ 2|Fg(𝜙)| · |Fg(𝜙)|.

Proof of Claim. Labels 𝑛 are generated in T by means of the application of the rule RL. For

L ∈ {E,M,N}, this rule is applied to two 𝑛-labelled contraints 𝑛 : 2𝑖𝛾, 𝑛 : 3𝑖𝛿 (for L = N
possibly also to a single constraint 𝑛 : 3𝑖𝛿), while for L = C it is applied to 𝑘 + 1 𝑛-labelled

contraints 𝑛 : 2𝑖𝛾1, ...𝑛 : 2𝑖𝛾𝑘, 𝑛 : 3𝑖𝛿. By the application condition of RL, each such

combination of constraints generates at most one label 𝑚. Therefore, the number of labels that

can be generated in T is bounded by the number of possible such combinations, which is at

most |Fg(𝜙)|2, for L ∈ {E,M,N}, and at most 2|Fg(𝜙)| · |Fg(𝜙)|, for L = C.

The theorem is then a consequence of the following observations. Given a completion

set T constructed by the L𝑛𝒜ℒ𝒞 tableau algorithm, we have by Claim 1.2 that the number of

applications of rule RL is bounded by |LT|, which is at most |Fg(𝜙)|2, for L ∈ {E,M,N},

and at most 2|Fg(𝜙)| · |Fg(𝜙)|, for L = C. Moreover, since every application of the rules R∧
and R∨ introduces a new formula to an 𝑛-labelled constraint, the total number of such rule

applications is bounded by |LT| · |Fg(𝜙)|. Finally, by Claim 1.1, the number of applications



of rules R⊓,R⊔,R∀,R∃,R=, R̸= per label 𝑛 is bounded by 2𝑞(|Fg(𝜙)|), where 𝑞 is a polynomial

function, since these rules add a new constraint to an 𝑛-labelled constraint system. Thus, the

overall number of such rule applications is bounded by |LT| · 2𝑞(|Fg(𝜙)|).

We now proceed to prove that the L𝑛𝒜ℒ𝒞 tableau algorithm is sound.

Theorem 2 (Soundness). If, having started on the initial completion set T𝜙, the L𝑛𝒜ℒ𝒞 tableau

algorithm constructs an L𝑛𝒜ℒ𝒞-complete and clash-free completion set for 𝜙, then 𝜙 is L𝑛𝒜ℒ𝒞
satisfiable.

Proof. Given an L𝑛𝒜ℒ𝒞-complete and clash-free completion set T for 𝜙, define, for 𝑛 ∈ LT,

𝜓 ∈ for¬̇(𝜙), 𝐶 ∈ con¬̇(𝜙), and 𝑥 occurring in T,

⌊𝐶⌋𝑥 = {𝑛 ∈ LT | 𝑛 : 𝐶(𝑥) ∈ 𝑆𝑛}, ⌊𝜓⌋ = {𝑛 ∈ LT | 𝑛 : 𝜓 ∈ 𝑆𝑛},

⌈𝐶⌉𝑥 = LT ∖ {𝑛 ∈ LT | 𝑛 : ¬̇𝐶(𝑥) ∈ 𝑆𝑛}, ⌈𝜓⌉ = LT ∖ {𝑛 ∈ LT | 𝑛 : ¬̇𝜓 ∈ 𝑆𝑛}.

Moreover, define Γ𝑥𝑛 = {𝜓 | 𝑛 : 𝜓 ∈ 𝑆𝑛} ∪ {𝐶 | 𝑛 : 𝐶(𝑥) ∈ 𝑆𝑛} and let 𝛾, 𝛿 range over

ML𝑛𝒜ℒ𝒞 formulas or concepts, where: ⌊𝛾⌋𝑥 = ⌊𝜓⌋, if 𝛾 = 𝜓, and ⌊𝛾⌋𝑥 = ⌊𝐶⌋𝑥, if 𝛾 = 𝐶;

and similarly for ⌈𝛾⌉𝑥. We set ℳ = (ℱ , ℐ), with ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼) and ℐ𝑛 = (Δ𝑛, ·ℐ𝑛), for

𝑛 ∈ 𝒲 , defined as follows:

• 𝒲 = LT;

• for every 𝑖 ∈ 𝐼 = {1, . . . , 𝑛}, we set 𝒩𝑖 : 𝒲 → 22
𝒲

such that:

– for L = E: 𝒩𝑖(𝑛) =
{︀
𝛼 | for some 2𝑖𝛾 ∈ Γ𝑥𝑛 : ⌊𝛾⌋𝑥 ⊆ 𝛼 ⊆ ⌈𝛾⌉𝑥

}︀
;

– for L = M: 𝒩𝑖(𝑛) =
{︀
𝛼 | for some 2𝑖𝛾 ∈ Γ𝑥𝑛 : ⌊𝛾⌋𝑥 ⊆ 𝛼

}︀
;

– for L = C: 𝒩𝑖(𝑛) =
{︀
𝛼 | for some 2𝑖𝛾1 ∈ Γ𝑥1𝑛 , . . . ,2𝑖𝛾𝑘 ∈ Γ𝑥𝑘𝑛 :⋂︀𝑘

𝑗=1⌊𝛾𝑗⌋𝑥𝑗 ⊆ 𝛼 ⊆
⋂︀𝑘
𝑗=1⌈𝛾𝑗⌉𝑥𝑗

}︀
;

– for L = N: 𝒩𝑖(𝑛) =
{︀
𝛼 | for some 2𝑖𝛾 ∈ Γ𝑥𝑛 : ⌊𝛾⌋𝑥 ⊆ 𝛼 ⊆ ⌈𝛾⌉𝑥

}︀
∪𝒲 ;

• Δ𝑛 = {𝑥 ∈ NV | 𝑥 occurs in 𝑆𝑛};

• 𝐴ℐ𝑛 = {𝑥 ∈ Δ𝑛 | 𝑛 : 𝐴(𝑥) ∈ 𝑆𝑛};

• 𝑟ℐ𝑛 = {(𝑥, 𝑦) ∈ Δ𝑛 ×Δ𝑛 | 𝑛 : 𝑟(𝑥, 𝑦) ∈ 𝑆𝑛 or 𝑛 : 𝑟(𝑧, 𝑦) ∈ 𝑆𝑛, for some 𝑧 blocking 𝑥
in 𝑆𝑛 }.

First, we observe the following.

• For L = M, we have that ℳ = (ℱ , ℐ) is such that ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼) is supplemented.

Indeed, for all 𝑛 ∈ 𝒲 , 𝛼, 𝛽 ⊆ 𝒲 , suppose that 𝛼 ∈ 𝒩𝑖(𝑛) and 𝛼 ⊆ 𝛽. By definition, this

implies that: for some 2𝑖𝛾 ∈ Γ𝑥𝑛, ⌊𝛾⌋𝑥 ⊆ 𝛼 ⊆ 𝛽. Hence, 𝛽 ∈ 𝒩𝑖(𝑛).



• For L = C, we have that ℳ = (ℱ , ℐ) is such that ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼) is closed un-

der intersection. Indeed, for all 𝑛 ∈ 𝒲 , 𝛼, 𝛽 ⊆ 𝒲 , suppose that 𝛼 ∈ 𝒩𝑖(𝑛) and

𝛽 ∈ 𝒩𝑖(𝑛). Now suppose that, for some 2𝑖𝛾1 ∈ Γ𝑥1𝑛 , . . . ,2𝑖𝛾𝑘 ∈ Γ𝑥𝑘𝑛 :
⋂︀𝑘
𝑗=1⌊𝛾𝑗⌋𝑥𝑗 ⊆

𝛼 ⊆
⋂︀𝑘
𝑗=1⌈𝛾𝑗⌉𝑥𝑗 and, for some 2𝑖𝛿1 ∈ Γ𝑦1𝑛 , . . . ,2𝑖𝛿ℎ ∈ Γ𝑦ℎ𝑛 :

⋂︀ℎ
𝑗=1⌊𝛿𝑗⌋𝑦𝑗 ⊆

𝛽 ⊆
⋂︀ℎ
𝑗=1⌈𝛿𝑗⌉𝑦𝑗 . Then for some 2𝑖𝛾1 ∈ Γ𝑥1𝑛 , . . . ,2𝑖𝛾𝑘 ∈ Γ𝑥𝑘𝑛 and some 2𝑖𝛿1 ∈

Γ𝑦1𝑛 , . . . ,2𝑖𝛿ℎ ∈ Γ𝑦ℎ𝑛 the following holds, which in turn implies that 𝛼 ∩ 𝛽 ∈ 𝒩𝑖(𝑛):⋂︀𝑘
𝑗=1⌊𝛾𝑗⌋𝑥𝑗 ∩

⋂︀ℎ
𝑗=1⌊𝛿𝑗⌋𝑦𝑗 ⊆ 𝛼 ∩ 𝛽 ⊆

⋂︀𝑘
𝑗=1⌈𝛾𝑗⌉𝑥𝑗 ∩

⋂︀ℎ
𝑗=1⌈𝛿𝑗⌉𝑦𝑗

• For L = N, we have that ℳ = (ℱ , ℐ), with ℱ = (𝒲, {𝒩𝑖}𝑖∈𝐼), is such that ℱ contains

the unit. Indeed, by construction, for all 𝑛 ∈ 𝒲 , 𝒲 ∈ 𝒩𝑖(𝑛).

We then require the following claims.

Claim 2.1. For every 𝑛 ∈ 𝒲 , 𝐶 ∈ con¬̇(𝜙), and 𝑥 ∈ Δ𝑛: if 𝑛 : 𝐶(𝑥) ∈ 𝑆𝑛, then 𝑥 ∈ 𝐶ℐ𝑛
.

Proof of Claim. We show the claim by induction on the weight of 𝐶 (in NNF). The base case of

𝐶 = 𝐴 comes immediately from the definitions. For the base case of 𝐶 = ¬𝐴, suppose that

𝑛 : ¬𝐴(𝑥) ∈ 𝑆𝑛. Since T is clash-free, we have that 𝑛 : 𝐴(𝑥) ̸∈ 𝑆𝑛, and thus 𝑥 ̸∈ 𝐴ℐ𝑛
by

definition of𝐴ℐ𝑛
, meaning 𝑥 ∈ (¬𝐴)ℐ𝑛 . The inductive cases of𝐶 = 𝐷⊓𝐸 and𝐶 = 𝐷⊔𝐸 come

from the fact that 𝑆𝑛 is closed under R⊓ and R⊔, respectively, and straightforward applications

of the inductive hypothesis. We show the remaining cases (cf. also [27, Claim 15.2]).

𝐶 = ∃𝑟.𝐷. Let 𝑛 : ∃𝑟.𝐷(𝑥) ∈ 𝑆𝑛, meaning that ∃𝑟.𝐷 ∈ Γ𝑥𝑛. We distinguish two cases.

• 𝑥 is not blocked by any variable in 𝑆𝑛. Since 𝑆𝑛 is closed underR∃, there exists 𝑦 occurring

in 𝑆𝑛 such that 𝑛 : 𝑟(𝑥, 𝑦) ∈ 𝑆𝑛 and 𝑛 : 𝐷(𝑦) ∈ 𝑆𝑛. Thus, by definition, (𝑥, 𝑦) ∈ 𝑟ℐ𝑛

and 𝑛 : 𝐷(𝑦) ∈ 𝑆𝑛. By inductive hypothesis, we obtain that 𝑥 ∈ (∃𝑟.𝐷)ℐ𝑛 .

• 𝑥 is blocked by a variable in 𝑆𝑛, implying that there exists a <-minimal (since < is a

well-ordering) 𝑦 occurring in 𝑆𝑛 such that 𝑦 < 𝑥 and {𝐸 | 𝑛 : 𝐸(𝑥) ∈ 𝑆𝑛} ⊆ {𝐸 |
𝑛 : 𝐸(𝑦) ∈ 𝑆𝑛}. In turn, this implies that 𝑦 is not blocked by any other variable 𝑧 in

𝑆𝑛 (for otherwise 𝑧 would block 𝑥, with 𝑧 < 𝑦, against the fact that 𝑦 is <-minimal).

By reasoning as in the case above, since 𝑦 is not blocked and 𝑆𝑛 is closed under R∃, we

have a variable 𝑧 occurring in 𝑆𝑛 such that 𝑛 : 𝑟(𝑦, 𝑧) ∈ 𝑆𝑛 and 𝑛 : 𝐷(𝑥) ∈ 𝑆𝑛. Since

𝑦 blocks 𝑥, by definition we have that (𝑥, 𝑧) ∈ 𝑟ℐ𝑛 , and by inductive hypothesis we get

from 𝑛 : 𝐷(𝑧) that 𝑧 ∈ 𝐷ℐ𝑛
. Thus, 𝑥 ∈ (∃𝑟.𝐷)ℐ𝑛 .

𝐶 = ∀𝑟.𝐷. Let 𝑛 : ∀𝑟.𝐷(𝑥) ∈ 𝑆𝑛, meaning that ∀𝑟.𝐷 ∈ Γ𝑥𝑛, and suppose that (𝑥, 𝑦) ∈ 𝑟ℐ𝑛 .

By definition, either 𝑛 : 𝑟(𝑥, 𝑦) ∈ 𝑆𝑛 or 𝑛 : 𝑟(𝑧, 𝑦) ∈ 𝑆𝑛, for some 𝑧 blocking 𝑥 in 𝑆𝑛. In the

former case, since 𝑆𝑛 is closed under R∀, we get that 𝑛 : 𝐷(𝑦) ∈ 𝑆𝑛. In the latter case, since 𝑧
blocks 𝑥 in 𝑆𝑛, we obtain 𝑛 : ∀𝑟.𝐷(𝑧) ∈ 𝑆𝑛; again, since 𝑆𝑛 is closed under R∀, this implies

that 𝑛 : 𝐷(𝑦) ∈ 𝑆𝑛. Hence, in both cases, we have 𝑛 : 𝐷(𝑦) ∈ 𝑆𝑛. By inductive hypothesis,

this means that 𝑦 ∈ 𝐷ℐ𝑛
. Since 𝑦 was arbitrary, we conclude that 𝑥 ∈ (∀𝑟.𝐷)ℐ𝑛 .

𝐶 = 2𝑖𝐷. Let 𝑛 : 2𝑖𝐷(𝑥) ∈ 𝑆𝑛, meaning that 2𝑖𝐷 ∈ Γ𝑥𝑛. Consider L ∈ Log.

L = E. We have by inductive hypothesis that ⌊𝐷⌋𝑥 = {𝑛 ∈ 𝒲 | 𝑛 : 𝐷(𝑥) ∈ 𝑆𝑛} ⊆ {𝑛 ∈
𝒲 | 𝑥 ∈ 𝐷ℐ𝑛} = J𝐷Kℳ𝑥 . By inductive hypothesis (since |¬̇𝐷| = |𝐷|), we also have that



{𝑛 ∈ 𝒲 | 𝑛 : ¬̇𝐷(𝑥) ∈ 𝑆𝑛} ⊆ {𝑛 ∈ 𝒲 | 𝑥 ∈ (¬̇𝐷)ℐ𝑛} = J¬̇𝐷Kℳ𝑥 = 𝒲 ∖ J𝐷Kℳ𝑥 . Hence,

J𝐷Kℳ𝑥 ⊆ 𝒲 ∖ {𝑤 ∈ 𝒲 | 𝑛 : ¬̇𝐷(𝑥) ∈ 𝑆𝑛} = ⌈𝐷⌉𝑥. In conclusion, we have 2𝑖𝐷 ∈ Γ𝑥𝑛
such that ⌊𝐷⌋𝑥 ⊆ J𝐷Kℳ𝑥 ⊆ ⌈𝐷⌉𝑥. Thus, by definition, J𝐷Kℳ𝑥 ∈ 𝒩𝑖(𝑛), as required.

L = M. We have by inductive hypothesis that ⌊𝐷⌋𝑥 = {𝑛 ∈ 𝒲 | 𝑛 : 𝐷(𝑥) ∈ 𝑆𝑛} ⊆ {𝑛 ∈
𝒲 | 𝑥 ∈ 𝐷ℐ𝑛} = J𝐷Kℳ𝑥 . Thus, we have 2𝑖𝐷 ∈ Γ𝑥𝑛 such that ⌊𝐷⌋𝑥 ⊆ J𝐷Kℳ𝑥 . By definition,

this means J𝐷Kℳ𝑥 ∈ 𝒩𝑖(𝑛), as required.

L ∈ {C,N}. This cases are analogous to the case for L = E.

𝐶 = 3𝑖𝐷. Let 𝑛 : 3𝑖𝐷(𝑥) ∈ 𝑆𝑛. Consider L ∈ Log.

L ∈ {E,M}. We distinguish two cases. (𝑖) There exists no 2𝑖𝛾 ∈ Γ𝑦𝑛. This means that

𝒩𝑖(𝑛) = ∅. Thus, 𝒲 ∖ J𝐷Kℳ𝑥 ̸∈ 𝒩𝑖(𝑛), meaning that 𝑥 ∈ (3𝑖𝐷)ℐ𝑛 . (𝑖𝑖) There exists

2𝑖𝛾 ∈ Γ𝑦𝑛. We then reason similarly to the case for L = C.

L = C. We distinguish two cases. (𝑖) There exist no 2𝑖𝛾1 ∈ Γ𝑦1𝑛 , . . . ,2𝑖𝛾𝑘 ∈ Γ𝑦𝑘𝑛 . As for

L = E, we obtain 𝑥 ∈ (3𝑖𝐷)ℐ𝑛 . (𝑖𝑖) There exist 2𝑖𝛾1 ∈ Γ𝑦1𝑛 , . . . ,2𝑖𝛾𝑘 ∈ Γ𝑦𝑘𝑛 . Since T
is L𝑛𝒜ℒ𝒞-complete, there exists 𝑚 ∈ 𝒲 such that: 𝛾1 ∈ Γ𝑦1𝑚 , . . . , 𝛾𝑘 ∈ Γ𝑦𝑘𝑚 and 𝐷 ∈ Γ𝑥𝑚;

or ¬̇𝛾𝑗 ∈ Γ
𝑦𝑗
𝑚 and ¬̇𝐷 ∈ Γ𝑥𝑚, for some 𝑗 ≤ 𝑘. By inductive hypothesis, the previous

step implies that there exists 𝑚 ∈ 𝒲 such that: 𝛾1 ∈ Γ𝑦1𝑚 , . . . , 𝛾𝑘 ∈ Γ𝑦𝑘𝑚 and 𝑥 ∈ 𝐷ℐ𝑚
;

or ¬̇𝛾𝑗 ∈ Γ
𝑦𝑗
𝑚 and 𝑥 ∈ ¬̇𝐷ℐ𝑚

, for some 𝑗 ≤ 𝑘. Equivalently, it is not the case that, for

every 𝑣 ∈ 𝒲 : 𝛾1 ∈ Γ𝑦1𝑚 , . . . , 𝛾𝑘 ∈ Γ𝑦𝑘𝑚 implies 𝑥 ̸∈ 𝐷ℐ𝑚
; and for all 𝑗 ≤ 𝑘, 𝑥 ∈ ¬̇𝐷ℐ𝑚

implies ¬̇𝛾𝑗 ̸∈ Γ
𝑦𝑗
𝑚 . In other words, it is not the case that:

⋂︀𝑘
𝑗=1⌊𝛾𝑗⌋𝑦𝑗 ⊆ 𝒲 ∖ J𝐷Kℳ𝑥 ; and

𝒲 ∖ J𝐷Kℳ𝑥 ⊆
⋂︀𝑘
𝑗=1⌈𝛾𝑙⌉𝑦𝑙 . Thus, 𝒲 ∖ J𝐷Kℳ𝑥 ̸∈ 𝒩𝑖(𝑛), i.e., 𝑥 ∈ (3𝑖𝐷)ℐ𝑛 , as required.

L = N. We distinguish two cases. (𝑖) There exists no 2𝑖𝛾 ∈ Γ𝑦𝑛. This means that 𝒩𝑖(𝑛) = 𝒲 .

Since T is L𝑛𝒜ℒ𝒞-complete, there exists 𝑚 ∈ 𝒲 such that 𝐷 ∈ Γ𝑥𝑚, i.e., 𝑚 : 𝐷(𝑥) ∈ 𝑆𝑚. By

inductive hypothesis, this implies 𝑥 ∈ 𝐷ℐ𝑚
, that is, J𝐷Kℳ𝑥 ̸= ∅. This holds iff 𝒲 ∖ J𝐷Kℳ𝑥 ̸=

𝒲 , and thus 𝒲 ∖ J𝐷Kℳ𝑥 ̸∈ 𝒩𝑖(𝑛). Hence, 𝑥 ∈ (3𝑖𝐷)ℐ𝑛 . (𝑖𝑖) There exists 2𝑖𝛾 ∈ Γ𝑦𝑛. We

then reason similarly to the case for L = C.

Claim 2.2. For every 𝑤 ∈ 𝒲 and 𝜓 ∈ con¬̇(𝜙): if 𝑛 : 𝜓 ∈ 𝑆𝑛, then ℳ, 𝑤 |= 𝜓.

Proof of Claim. We prove the claim by induction on the weight of 𝜙 (in NNF).

𝜓 = (⊤ ⊑ 𝐶). Let 𝑛 : ⊤ ⊑ 𝐶 ∈ 𝑆𝑛 and let 𝑥 ∈ Δ𝑛. Since 𝑆𝑛 is closed under (R=) and 𝑥
occurs in 𝑆𝑛, we have that 𝑛 : 𝐶(𝑥) ∈ 𝑆𝑛. By Claim 2.1, we have that 𝑥 ∈ 𝐶ℐ𝑛

. Given that 𝑥 is

arbitrary, we conclude that ℳ, 𝑛 |= ⊤ ⊑ 𝐶 .

𝜓 = ¬(⊤ ⊑ 𝐶). Let 𝑛 : ¬(⊤ ⊑ 𝐶) ∈ 𝑆𝑛. Since 𝑆𝑛 is closed under (R̸=), there exists 𝑥
occurring in 𝑆𝑛 such that 𝑛 : ¬̇𝐶(𝑥) ∈ 𝑆𝑛. By Claim 2.1, we obtain that 𝑥 ∈ (¬̇𝐶)ℐ𝑛 , for some

𝑥 ∈ Δ𝑤. Hence, ℳ, 𝑛 |= ¬(⊤ ⊑ 𝐶).
The inductive cases of𝜓 = 𝜒∧𝜗 and𝜓 = 𝜒∨𝜗 follow from the definitions and straighforward

applications of the inductive hypothesis. Moreover the inductive cases of𝜓 = 2𝑖𝜒 and𝜓 = 3𝑖𝜒
can be proved analogously to Claim 2.1.

Since, by definition, we have 0 : 𝜙 ∈ 𝑆0 ⊆ T, thanks to Claim 2.2 we obtain ℳ, 0 |= 𝜙.



We finally show completeness of the L𝑛𝒜ℒ𝒞 tableau algorithm.

Theorem 3 (Completeness). If 𝜙 is L𝑛𝒜ℒ𝒞 satisfiable, then, having started on the initial completion

set T𝜙, the L𝑛𝒜ℒ𝒞 tableau algorithm constructs an L𝑛𝒜ℒ𝒞-complete and clash-free completion set

for 𝜙.

Proof. Let ℳ = (ℱ , ℐ) be an L𝑛𝒜ℒ𝒞-model satisfying 𝜙, with ℱ = (𝒲, {𝒩}𝑖∈𝐼), i.e., ℳ, 𝑤𝜙 |=
𝜙, for some 𝑤𝜙 ∈ 𝒲 . We require the following definitions and technical results. First, we

let 𝛾, 𝛿 (possibly indexed) range over ML𝑛𝒜ℒ𝒞 concepts and formulas, with J𝛾Kℳ𝑑 = J𝜓Kℳ,

if 𝛾 = 𝜓, and J𝛾Kℳ𝑑 = J𝐶Kℳ𝑑 , if 𝛾 = 𝐶 . Then, for 𝑤 ∈ 𝒲 and 𝑑 ∈
⋃︀
𝑣∈𝒲 Δ𝑣 , define

Φ𝑑𝑤 = {𝜓 ∈ for¬̇(𝜙) | ℳ, 𝑤 |= 𝜓} ∪ {𝐶 ∈ con¬̇(𝜙) | 𝑑 ∈ 𝐶ℐ𝑤}. Observe that, if 𝐶 ∈ Φ𝑑𝑤,

then 𝑑 ∈ Δ𝑤. We now show that the following holds.

Claim 3.1. For every 𝑤 ∈ 𝒲 and every 𝑑1, . . . , 𝑑𝑘, 𝑒 ∈
⋃︀
𝑣∈𝒲 Δ𝑣 : if 2𝑖𝛾1 ∈ Φ𝑑1𝑤 , . . . ,2𝑖𝛾𝑘 ∈

Φ𝑑𝑘𝑤 and 3𝑖𝛿 ∈ Φ𝑒𝑤, then there exists 𝑣 ∈ 𝒲 such that:

(0) 𝛾1 ∈ Φ𝑑1𝑣 , . . . , 𝛾𝑘 ∈ Φ𝑑𝑘𝑣 and 𝛿 ∈ Φ𝑒𝑣 ; or

(1) ¬̇𝛾1 ∈ Φ𝑑1𝑣 and ¬̇𝛿 ∈ Φ𝑒𝑣 ; or

.

.

.

(𝑙) ¬̇𝛾𝑙 ∈ Φ𝑑𝑘𝑣 and ¬̇𝛿 ∈ Φ𝑒𝑣 ;

where: for L = E, 𝑘 = 𝑙 = 1; for L = M, 𝑘 = 1 and 𝑙 = 0; for L = C, 𝑘 ≥ 1 and 𝑙 = 𝑘; for

L = N, 𝑘 = 𝑙 = 1 or 𝑘 = 𝑙 = 0.

Proof. We consider each L ∈ Log.

L = E. Assume 2𝑖𝛾 ∈ Φ𝑑𝑤,3𝑖𝛿 ∈ Φ𝑒𝑤 , meaning that J𝛾Kℳ𝑑 ∈ 𝒩𝑖(𝑤) and 𝒲 ∖ J𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤),
i.e., J¬̇𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤). Towards a contradiction, suppose that, for every 𝑣 ∈ 𝒲 , the following

holds: (𝛾 ̸∈ Φ𝑑𝑣 or 𝛿 ̸∈ Φ𝑒𝑣) and (¬̇𝛾 ̸∈ Φ𝑑𝑣 or ¬̇𝛿 ̸∈ Φ𝑒𝑣). Equivalently, for every 𝑣 ∈ 𝒲 :

(𝛾 ∈ Φ𝑑𝑣 implies 𝛿 ̸∈ Φ𝑒𝑣) and (¬̇𝛿 ∈ Φ𝑒𝑣 implies ¬̇𝛾 ̸∈ Φ𝑑𝑣). By definition, we have that 𝛾 ∈ Φ𝑑𝑣
iff ¬̇𝛾 ̸∈ Φ𝑑𝑣 and 𝛿 ̸∈ Φ𝑒𝑣 iff ¬̇𝛿 ∈ Φ𝑒𝑣 . Thus, the previous step means: (J𝛾Kℳ𝑑 ⊆ J¬̇𝛿Kℳ𝑒 ) and

(J¬̇𝛿Kℳ𝑒 ⊆ J𝛾Kℳ𝑑 ), i.e., J𝛾Kℳ𝑑 = J¬̇𝛿Kℳ𝑒 , contradicting the assumption that J𝛾Kℳ𝑑 ∈ 𝒩𝑖(𝑤)
and J¬̇𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤).

L = M. Assume2𝑖𝛾 ∈ Φ𝑑𝑤,3𝑖𝛿 ∈ Φ𝑒𝑤 , meaning that J𝛾Kℳ𝑑 ∈ 𝒩𝑖(𝑤) and 𝒲 ∖ J𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤),
i.e., J¬̇𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤). Towards a contradiction, suppose that, for every 𝑣 ∈ 𝒲 , the following

holds: 𝛾 ̸∈ Φ𝑑𝑣 or 𝛿 ̸∈ Φ𝑒𝑣 . Equivalently, for every 𝑣 ∈ 𝒲 : 𝛾 ∈ Φ𝑑𝑣 implies 𝛿 ̸∈ Φ𝑒𝑣 . By

definition, the previous step means J𝛾Kℳ𝑑 ⊆ J¬̇𝛿Kℳ𝑒 . Since ℳ is supplemented, we have

that J¬̇𝛿Kℳ𝑒 ∈ 𝒩𝑖(𝑤), which is impossible.

L = C. Assume 2𝑖𝛾1 ∈ Φ𝑑1𝑤 , . . . ,2𝑖𝛾𝑘 ∈ Φ𝑑𝑘𝑤 ,3𝑖𝛿 ∈ Φ𝑒𝑤, meaning that J𝛾𝑗Kℳ𝑑𝑗 ∈ 𝒩𝑖(𝑤), for

𝑗 = 1, . . . , 𝑘, and 𝒲 ∖ J𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤), i.e., J¬̇𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤). Towards a contradiction,

suppose that, for every 𝑣 ∈ 𝒲 , none of the following holds: (0) 𝛾1 ∈ Φ𝑑1𝑣 , . . . , 𝛾𝑘 ∈ Φ𝑑𝑘𝑣
and 𝛿 ∈ Φ𝑒𝑣 ; (1) ¬̇𝛾1 ∈ Φ𝑑1𝑣 and ¬̇𝛿 ∈ Φ𝑒𝑣 ; ...; (𝑘) ¬̇𝛾𝑘 ∈ Φ𝑑𝑘𝑣 and ¬̇𝛿 ∈ Φ𝑒𝑣 . Equivalently, for



every 𝑣 ∈ 𝒲 , it holds that (0) 𝛾1 ∈ Φ𝑑1𝑣 , . . . , 𝛾𝑘 ∈ Φ𝑑𝑘𝑣 implies 𝛿 ̸∈ Φ𝑒𝑣; and (1) ¬̇𝛿 ∈ Φ𝑒𝑣
implies ¬̇𝛾1 ̸∈ Φ𝑑1𝑣 ; ... and (𝑘) ¬̇𝛿 ∈ Φ𝑒𝑣 implies ¬̇𝛾𝑘 ̸∈ Φ𝑑𝑘𝑣 . By definition, from the

previous step we obtain (0)
⋂︀𝑘
𝑗=1J𝛾𝑗K

ℳ
𝑑𝑗

⊆ J¬̇𝛿Kℳ𝑒 ; and (1) J¬̇𝛿Kℳ𝑒 ⊆ J𝛾1Kℳ𝑑1 ; ... and (𝑘)

J¬̇𝛿Kℳ𝑒 ⊆ J𝛾𝑘Kℳ𝑑𝑘 . Hence

⋂︀𝑘
𝑗=1J𝛾𝑗K

ℳ
𝑑𝑗

= J¬̇𝛿Kℳ𝑒 . Since ℳ is closed under intersection, we

obtain J¬̇𝛿Kℳ𝑒 ∈ 𝒩𝑖(𝑤), a contradiction.

L = N. We distinguish two cases: (𝑖) Let 𝑘 = 𝑙 = 0. That is, there exists no 2𝑖𝛾 ∈ Φ𝑑𝑤, while

3𝑖𝛿 ∈ Φ𝑒𝑤, meaning that 𝒲 ∖ J𝛿Kℳ𝑒 ̸∈ 𝒩𝑖(𝑤). Towards a contradiction, suppose that, for

every 𝑣 ∈ 𝒲 , 𝛿 ̸∈ Φ𝑒𝑣 . Since, by definition, we have 𝛿 ̸∈ Φ𝑒𝑣 iff ¬̇𝛿 ∈ Φ𝑒𝑣 , the previous step

means that 𝒲 ⊆ J¬̇𝛿Kℳ𝑒 , and hence J𝛿Kℳ𝑒 = ∅. Thus, 𝒲 ̸∈ 𝒩𝑖(𝑤), contradicting the fact

that ℳ contains the unit. (𝑖𝑖) Let 𝑘 = 𝑙 = 1. Hence, there exists 2𝑖𝛾 ∈ Φ𝑒𝑤 and 3𝑖𝛿 ∈ Φ𝑒𝑤.

We then reason similarly to the case for L = E.

Given a completion set T for 𝜙 and 𝑆𝑛 ⊆ T, let Γ𝑥𝑛 = {𝜓 | 𝑛 : 𝜓 ∈ 𝑆𝑛} ∪ {𝐶 | 𝑛 : 𝐶(𝑥) ∈
𝑆𝑛}. We say that a completion set T for 𝜙 is ℳ-compatible if there exists a function 𝜋 from LT
to 𝒲 , and, for every 𝑛 ∈ LT, there exists a function 𝜋𝑛 from the set of variables occurring in

𝑆𝑛 to Δ𝜋(𝑛), such that 𝛾 ∈ Γ𝑥𝑛 implies 𝛾 ∈ Φ
𝜋𝑛(𝑥)
𝜋(𝑛) . We then require the following claim.

Claim 3.2. If a completion set T for 𝜙 is ℳ-compatible, then for every L𝑛𝒜ℒ𝒞-rule R applicable

to T there exists a completion set T′
obtained from T by an application of R such that T′

is

ℳ-compatible.

Proof. Given an ℳ-compatible completion set T for 𝜙 and a label 𝑛 ∈ LT, let 𝜋 and 𝜋𝑛 be the

functions provided by the definition of ℳ-compatibility. We need to consider each L𝑛𝒜ℒ𝒞-rule

R. For R ∈ {R∧,R∨,R⊓,R⊔,R∀,R∃,R=,R ̸=}, we proceed similarly to [27, Claim 15.14]. Here

we consider the case of RL: Suppose that RL is applicable to T. Let 2𝑖𝛾1 ∈ Γ𝑥1𝑛 , . . . ,2𝑖𝛾𝑘 ∈
Γ𝑥𝑘𝑛 ,3𝑖𝛿 ∈ Γ𝑦𝑛. Since T is ℳ-compatible, we have that 2𝑖𝛾1 ∈ Φ

𝜋𝑛(𝑥1)
𝜋(𝑛) , . . . ,2𝑖𝛾𝑘 ∈ Φ

𝜋𝑛(𝑥𝑘)
𝜋(𝑛)

and 3𝑖𝛿 ∈ Φ
𝜋𝑛(𝑦)
𝜋(𝑛) . Thus, by Claim 3.1, there exists 𝑣 ∈ 𝒲 such that: 𝛾1 ∈ Φ

𝜋𝑛(𝑥1)
𝑣 , . . . , 𝛾𝑘 ∈

Φ
𝜋𝑛(𝑥𝑘)
𝑣 and 𝛿 ∈ Φ

𝜋𝑛(𝑦)
𝑣 ; or ¬̇𝛾𝑗 ∈ Φ

𝜋𝑛(𝑥𝑗)
𝑣 and ¬̇𝛿 ∈ Φ

𝜋𝑛(𝑦)
𝑣 , for some 𝑗 ≤ 𝑙; where: for

L = E, 𝑘 = 𝑙 = 1; for L = M, 𝑘 = 1 and 𝑙 = 0; for L = C, 𝑘 ≥ 1 and 𝑙 = 𝑘; for

L = N, 𝑘 = 𝑙 = 1 or 𝑘 = 𝑙 = 0. By applying the rule RL accordingly, one can obtain T′

by adding 𝑚 : 𝛾1, . . . ,𝑚 : 𝛾𝑘,𝑚 : 𝛿, or 𝑚 : ¬̇𝛾𝑗 ,𝑚 : ¬̇𝛿, for some 𝑗 ≤ 𝑙, to T (recall that 𝑚
is fresh for T and 𝛾𝑗 is either 𝜓𝑗 ∈ for¬̇(𝜙) or 𝐶𝑗(𝑥𝑗), with 𝐶𝑗 ∈ con¬̇(𝜙), for 𝑗 = 1, . . . , 𝑘,

and 𝛿 is either 𝜒 ∈ for¬̇(𝜙) or 𝐷(𝑦), with 𝐷 ∈ con¬̇(𝜙)). By extending 𝜋 with 𝜋(𝑚) = 𝑣,

and 𝜋𝑚 with 𝜋𝑚(𝑥1) = 𝜋𝑛(𝑥1), . . . , 𝜋𝑚(𝑥𝑘) = 𝜋𝑛(𝑥𝑘), 𝜋𝑚(𝑦) = 𝜋𝑛(𝑦), we obtain that T′
is

ℳ-compatible.

To conclude, let T𝜙 = {0 : 𝜙, 0 : ⊤(𝑥)} be the initial completion set for 𝜙. Define 𝜋(0) = 𝑤𝜙
(where ℳ, 𝑤𝜙 |= 𝜙) and 𝜋0(𝑥) = 𝑑, for an arbitrary 𝑑 ∈ Δ𝑤𝜙 . Clearly, these functions ensure

that T𝜙 is ℳ-compatible. By Claim 3.2, we can apply the L𝑛𝒜ℒ𝒞-rules so that the obtained

completion sets are ℳ-compatible as well. From Theorem 1, we have that the L𝑛𝒜ℒ𝒞 tableau

algorithm eventually terminates, returning an L𝑛𝒜ℒ𝒞-complete completion set for 𝜙 that is

clash-free by construction.



By Theorem 1, we have that the non-deterministic L𝑛𝒜ℒ𝒞 tableau algorithm terminates after

exponentially many steps in the size of the input formula. By Theorems 2 and 3, such algorithm

is sound and complete with respect to satisfiability in varying domain neighbourhood models.

Thus, we obtain the following result.

Theorem 4. The L𝑛𝒜ℒ𝒞 formula satisfiability problem on varying domain neighbourhood models

is decidable in NExpTime.

To conclude this section, we observe that as an immediate consequence of the above results

we also obtain a (constructive) proof of the following kind of exponential model property.

Corollary 5. For L ∈ {E,M,N} (respectively, L = C), every L𝑛𝒜ℒ𝒞 satisfiable formula 𝜙 has

a model with at most 𝑝(|Fg(𝜙)|) (respectively, at most 2𝑝(|Fg(𝜙)|)) worlds, each of them having a

domain with at most 2𝑞(|Fg(𝜙)|) elements, where 𝑝 and 𝑞 are polynomial functions.

Proof. By Theorem 3, if 𝜙 is L𝑛𝒜ℒ𝒞 satisfiable, then there is a L𝑛𝒜ℒ𝒞-complete and clash-free

completion set T for it. Then by Theorem 2, there exists a model ℳ = (𝒲, {𝒩𝑖}𝑖∈𝐼 , ℐ) for

𝜙 where 𝒲 = LT and for each 𝑛 ∈ 𝒲 , Δ𝑛 = {𝑥 ∈ NV | 𝑥 occurs in 𝑆𝑛}. By Theorem 1,

Claim 1.2, it follows |𝒲| ≤ |Fg(𝜙)|2 for L ∈ {E,M,N}, and |𝒲| ≤ 2|Fg(𝜙)| · |Fg(𝜙)| for

L = C, finally by Theorem 1, Claim 1.1, for each 𝑛 ∈ 𝒲 , |Δ𝑛| does not exceed 2𝑞(|Fg(𝜙)|),
where 𝑝 and 𝑞 are polynomial functions.

4. Reasoning in Fragments without Modalised Concepts

An ML
𝑛|g
𝒜ℒ𝒞 formula is defined similarly to the ML𝑛𝒜ℒ𝒞 case, by disallowing modalised concepts.

Given L ∈ Log, the L𝑛|g𝒜ℒ𝒞 formula satisfiability problem on constant domain neighbourhood

models is the ML
𝑛|g
𝒜ℒ𝒞 formula satisfiability problem on constant domain neighbourhood models

based on neighbourhood frames in the respective class for L (cf. Section 2). An ML𝑛 formula,

instead, is defined analogously to ML
𝑛|g
𝒜ℒ𝒞 , except that we built it from the standard propositional

(rather than 𝒜ℒ𝒞) language over a countable set of propositional letters NP. The semantics

of ML𝑛 formulas is given in terms of propositional neighbourhood models (or simply models)

ℳP = (𝒲, {𝒩𝑖}𝑖∈𝐼 ,𝒱), where (𝒲, {𝒩𝑖}𝑖∈𝐼) is a neighbourhood frame, with 𝐼 = {1, . . . , 𝑛}
in the following, and 𝒱 : NP → 2𝒲 is a function mapping propositional letters to sets of worlds

(see [20, 29]). The L𝑛 formula satisfiability problem, is the ML𝑛 formula satisfiability problem

on propositional neighbourhood models based on neighbourhood frames in the respective class

for L. A propositional neighbourhood model based on a neighbourhood frame in the respective

class for L is called L𝑛 model.

In Dalmonte et al. [24], it is shown that E
𝑛|g
𝒜ℒ𝒞 and M

𝑛|g
𝒜ℒ𝒞 formula satisfiability problems on

constant domain neighbourhood models are ExpTime-complete. We now show tight complexity

results forC
𝑛|g
𝒜ℒ𝒞 andN

𝑛|g
𝒜ℒ𝒞 , using again the notion of a propositional abstraction of a formula (as

in, e.g., [30]). Here, one can separate the satisfiability test into two parts, one for the description

logic dimension and one for the modal dimension. The propositional abstraction 𝜙prop of an

ML
𝑛|g
𝒜ℒ𝒞 formula 𝜙 is the result of replacing each 𝒜ℒ𝒞 CI in 𝜙 by a propositional letter 𝑝, so that

there is a 1 : 1 relationship between the 𝒜ℒ𝒞 CI 𝜋 occurring in 𝜙 and the propositional letters

𝑝𝜋 used for the abstraction. We set NP(𝜙) = {𝑝𝜋 ∈ NP | 𝜋 is an 𝒜ℒ𝒞 CI in 𝜙}. Given an



ML
𝑛|g
𝒜ℒ𝒞 formula 𝜙, we say that a propositional neighbourhood model ℳP = (𝒲, {𝒩𝑖}𝑖∈𝐼 ,𝒱)

of 𝜙prop is 𝜙-consistent if, for all 𝑤 ∈ 𝒲 , the following 𝒜ℒ𝒞 formula is satisfiable⋀︀
𝑝𝜋∈NP(𝑤)

𝜋 ∧
⋀︀
𝑝𝜋∈NP(𝑤)

¬𝜋,

where NP(𝑤) = {𝑝𝜋 ∈ NP(𝜙) | 𝑤 ∈ 𝒱(𝑝𝜋)} and NP(𝑤) = NP(𝜙) ∖NP(𝑤). We now formalise

the connection betweenML
𝑛|g
𝒜ℒ𝒞 formulas and their propositional abstractions with the following

lemma, where L ∈ {C,N}, obtained by adapting the proof of Dalmonte et al. [24, Lemma 1].

Lemma 6. A formula 𝜙 is L𝑛|g𝒜ℒ𝒞 satisfiable on constant domain neighbourhood models iff 𝜙prop

is satisfied in a 𝜙-consistent L𝑛 model.

We assume that the primitive connectives used to build propositional formulas are ¬ and ∧
(∨ is expressed using ¬ and ∧), and we denote by sub(𝜙prop) the set of subformulas of 𝜙prop

closed under single negation. A valuation for a propositional ML𝑛 formula 𝜙prop is a function

𝜈 : sub(𝜙prop) → {0, 1} that satisfies the following conditions: (1) for all ¬𝜓 ∈ sub(𝜙prop),
𝜈(𝜓) = 1 iff 𝜈(¬𝜓) = 0; (2) for all 𝜓1 ∧ 𝜓2 ∈ sub(𝜙prop), 𝜈(𝜓1 ∧ 𝜓2) = 1 iff 𝜈(𝜓1) = 1
and 𝜈(𝜓2) = 1; and (3) 𝜈(𝜙prop) = 1. We say that a valuation for 𝜙prop is 𝜙-consistent if any

propositional neighbourhood model of the form ({𝑤}, {𝒩𝑖}𝑖∈𝐼 ,𝒱) satisfying 𝑤 ∈ 𝒱(𝑝𝜋) iff

𝜈(𝑝𝜋) = 1, for all 𝑝𝜋 ∈ NP(𝜙), is 𝜙-consistent. We now establish that satisfiability of 𝜙prop in a

𝜙-consistent C𝑛
(respectively, N𝑛

) model is characterized by the existence of a 𝜙-consistent

valuation satisfying the property described in Lemma 7 (respectively, Lemma 8).

Lemma 7. A formula 𝜙prop is satisfied in a 𝜙-consistent C𝑛
model iff there is a 𝜙-consistent

valuation 𝜈 for 𝜙prop such that if 2𝑖𝜓1, . . . ,2𝑖𝜓𝑘 are in sub(𝜙prop), 𝜈(2𝑖𝜓𝑗) = 1 for all 1 ≤
𝑗 < 𝑘, and 𝜈(2𝑖𝜓𝑘) = 0, then either (

⋀︀𝑘−1
𝑗=1 𝜓𝑗 ∧ ¬𝜓𝑘) or (¬𝜓𝑗 ∧ 𝜓𝑘) for some 1 ≤ 𝑗 < 𝑘 is

satisfied in a 𝜙-consistent C𝑛
model.

Proof. (⇒) Suppose that 𝜙prop is satisfied in a world 𝑤 of a 𝜙-consistent C𝑛
model ℳP =

(𝒲, {𝒩𝑖}𝑖∈𝐼 ,𝒱). That is, ℳP, 𝑤 |= 𝜙prop. We define a 𝜙-consistent valuation for 𝜙prop by

setting 𝜈(𝜓) = 1 if ℳP, 𝑤 |= 𝜓 and 𝜈(𝜓) = 0 if ℳP, 𝑤 ̸|= 𝜓. It is easy to check that 𝜈 is indeed

a 𝜙-consistent valuation (given that ℳP
is a 𝜙-consistent C𝑛

model). Assume 2𝑖𝜓1, . . . ,2𝑖𝜓𝑘
are in sub(𝜙prop), 𝜈(2𝑖𝜓𝑗) = 1 for all 1 ≤ 𝑗 < 𝑘, and 𝜈(2𝑖𝜓𝑘) = 0. Then ℳP, 𝑤 |= 2𝑖𝜓𝑗 for

all 1 ≤ 𝑗 < 𝑘, and ℳP, 𝑤 ̸|= 2𝑖𝜓𝑘 . By definition, (2𝑖𝜓1∧. . .∧2𝑖𝜓𝑘−1) → 2𝑖(𝜓1∧. . .∧𝜓𝑘−1)
holds in C𝑛

models. So ℳP, 𝑤 |= 2𝑖(𝜓1 ∧ . . . ∧ 𝜓𝑘−1) and ℳP, 𝑤 ̸|= 2𝑖𝜓𝑘. This means

that 𝜈(2𝑖(
⋀︀𝑘−1
𝑗=1 𝜓𝑗)) = 1 while 𝜈(2𝑖𝜓𝑘) = 0. By definition, 𝒱(

⋀︀𝑘−1
𝑗=1 𝜓𝑗) ∈ 𝒩𝑖(𝑤) and

𝒱(𝜓𝑘) ̸∈ 𝒩𝑖(𝑤). So, 𝒱(
⋀︀𝑘−1
𝑗=1 𝜓𝑗) ̸= 𝒱(𝜓𝑘). Then, there is a world 𝑢 in the symmetrical

difference of these sets such that ℳP, 𝑢 |= (
⋀︀𝑘−1
𝑗=1 𝜓𝑗 ∧ ¬𝜓𝑘) ∨ (¬(

⋀︀𝑘−1
𝑗=1 𝜓𝑗) ∧ 𝜓𝑘).

(⇐) Suppose there is a 𝜙-consistent valuation 𝜈 for 𝜙prop such that if 2𝑖𝜓1, . . . ,2𝑖𝜓𝑘 are in

sub(𝜙prop), 𝜈(2𝑖𝜓𝑗) = 1 for all 1 ≤ 𝑗 < 𝑘, and 𝜈(2𝑖𝜓𝑘) = 0, then there is a 𝜙-consistent C𝑛

model

ℳP⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

= (𝒲⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

, {𝒩⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘𝑖

}𝑖∈𝐼 ,𝒱⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

)

and a world 𝑤⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

∈ 𝒲⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

such that

ℳP⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

, 𝑤⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

|= ((

𝑘−1⋀︁
𝑗=1

𝜓𝑗) ∧ ¬𝜓𝑘) ∨ (¬(
𝑘−1⋀︁
𝑗=1

𝜓𝑗) ∧ 𝜓𝑘).



Let ℳP
1 , . . . ,ℳP

𝑚 be an enumeration of the models ℳP⋀︀𝑘−1
𝑗=1 𝜓𝑗 ,𝜓𝑘

, as above. That is, we

take one model ℳP⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝜓𝑘

for each pair 𝑗 =
⋀︀𝑘−1
𝑙=1 𝜓𝑙, 𝜓𝑘 where ℳP

𝑗 = (𝒲𝑗 , {𝒩𝑗𝑖}𝑖∈𝐼 ,𝒱𝑗),

and let 𝑤1, . . . , 𝑤𝑚 be an enumeration of the worlds 𝑤⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝜓𝑘

, with 𝑗 =
⋀︀𝑘−1
𝑙=1 𝜓𝑙, 𝜓𝑘 and

𝑤𝑗 ∈ 𝒲𝑗 . We assume without loss of generality that 𝒲𝑗 ∩𝒲𝑘 = ∅ for 𝑗 ̸= 𝑘.

In the following, we define a 𝜙-consistent C𝑛
model ℳP = (𝒲, {𝒩𝑖}𝑖∈𝐼 ,𝒱) for 𝜙prop.

Intuitively, we construct ℳP
by taking the union of each ℳP

𝑗 with the addition of a new

world 𝑤 that will satisfy 𝜙prop. We define 𝒲 as

⋃︀
1≤𝑗≤𝑛𝒲𝑗 ∪ {𝑤}, where 𝑤 is fresh. Before

defining 𝒩𝑖 and 𝒱 , we define the function 𝐽 : sub(𝜙prop) → 2𝒲 with 𝐽(𝜓) =
⋃︀

0≤𝑗≤𝑚 𝒱𝑗(𝜓)
for all 𝜓 ∈ sub(𝜙prop), where 𝒱0 : sub(𝜙) → 2{𝑤} is the function that assigns 𝜓 to {𝑤}, if

𝜈(𝜓) = 1, and to ∅, otherwise (𝒱𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, is as above). By construction, we have that

𝐽(¬𝜓) = 𝒲 ∖ 𝐽(𝜓) and 𝐽(𝜓1 ∧ 𝜓2) = 𝐽(𝜓1) ∩ 𝐽(𝜓2). We define the assignment 𝒱 as the

function 𝒱 : NP(𝜙) → 2𝒲 satisfying 𝒱(𝑝𝜋) = 𝐽(𝑝𝜋) for all 𝑝𝜋 ∈ NP(𝜙).
It remains to define 𝒩𝑖, for 𝑖 ∈ 𝐼 . For 𝑢 ∈ 𝒲𝑗 we first put 𝛼 ⊆ 𝑊 in 𝒩𝑖(𝑢) precisely

when ℳP
𝑗 , 𝑢 |= 2𝑖𝜓𝛼 and 𝛼 = 𝐽(𝜓𝛼) for some 2𝑖𝜓𝛼 ∈ sub(𝜙). Then, we close 𝒩𝑖 under

intersection so that ℳP
is a C𝑛

model. The next two claims establish that 𝒩𝑖 is as expected.

Claim 7.1. If 𝛽 ∈ 𝒩𝑖(𝑢) and 𝛽 = 𝐽(𝜓) for some 2𝑖𝜓 ∈ sub(𝜙prop), then ℳP
𝑗 , 𝑢 |= 2𝑖𝜓.

Indeed, since 𝛽 = 𝐽(𝜓) ∈ 𝒩𝑖(𝑢), we must have that ℳP
𝑗 , 𝑢 |= 2𝑖𝜓1,𝛽 , . . . , ℳP

𝑗 , 𝑢 |= 2𝑖𝜓𝑚,𝛽
and 𝛽 =

⋂︀𝑚
𝑙=1 𝐽(𝜓𝑙,𝛽) for some 2𝑖𝜓1,𝛽, . . . ,2𝑖𝜓𝑚,𝛽 ∈ sub(𝜙prop). Since 𝒩𝑖 is closed under

intersection, in fact, we have that ℳP
𝑗 , 𝑢 |= 2𝑖(

⋀︀𝑚
𝑙=1 𝜓𝑙,𝛽). But since 𝐽(𝜓) =

⋂︀𝑚
𝑖=1 𝐽(𝜓𝑖,𝛽),

we also have 𝒱𝑗(𝜓) =
⋂︀𝑚
𝑙=1 𝒱𝑗(𝜓𝑙,𝛽) (recall that 𝒲𝑗 ∩𝒲𝑘 = ∅ for 𝑘 ̸= 𝑗), so ℳP

𝑗 , 𝑢 |= 2𝑖𝜓 iff

ℳP
𝑗 , 𝑢 |= 2𝑖(

⋀︀𝑚
𝑙=1 𝜓𝑙,𝛽). It follows that ℳP

𝑗 , 𝑢 |= 2𝑖𝜓.

Regarding the fresh world 𝑤 introduced above in 𝒲 , we first put 𝛼 ⊆ 𝒲 in 𝒩𝑖(𝑤) precisely

when 𝜈(2𝑖𝜓𝛼) = 1 and 𝛼 = 𝐽(𝜓𝛼) for some 2𝑖𝜓𝛼 ∈ sub(𝜙prop). Then, we again close 𝒩𝑖

under intersection so that ℳP
is a C𝑛

model.

Claim 7.2. If 𝛽 ∈ 𝒩𝑖(𝑤) and 𝛽 = 𝐽(
⋀︀𝑘−1
𝑙=1 𝜓𝑙) for some 2𝑖𝜓1, . . . ,2𝑖𝜓𝑘−1 ∈ sub(𝜙prop) then

𝜈(2𝑖𝜓𝑙) = 1 for all 1 ≤ 𝑙 < 𝑘.

Indeed, since 𝛽 = 𝐽(
⋀︀𝑘−1
𝑙=1 𝜓𝑙) ∈ 𝒩𝑖(𝑤)we must have that 𝜈(2𝑖𝜓1,𝛽) = 1, . . . , 𝜈(2𝑖𝜓𝑚,𝛽) =

1 and 𝛽 =
⋂︀𝑚
𝑖=1 𝐽(𝜓𝑖,𝛽) for some 2𝑖𝜓1,𝛽, . . . ,2𝑖𝜓𝑚,𝛽 ∈ sub(𝜙prop). Suppose now that

𝜈(
⋀︀𝑘−1
𝑙=1 𝜓𝑙) = 0. Then, by assumption, there exists a structure ℳP

𝑗 = (𝒲𝑗 , {𝒩𝑗𝑖}𝑖∈𝐼 ,𝒱𝑗) and a

world 𝑤𝑗 ∈ 𝒲𝑗 such that ℳP
𝑗 , 𝑤𝑗 |= (

⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝛽 ∧¬(

⋀︀𝑘−1
𝑙=1 𝜓𝑙))∨ (¬(

⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝛽)∧ (

⋀︀𝑘−1
𝑙=1 𝜓𝑙)).

It follows that 𝒱𝑗(
⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝛽) ̸= 𝒱𝑗(

⋀︀𝑘−1
𝑙=1 𝜓𝑙). Consequently 𝐽(

⋀︀𝑘−1
𝑙=1 𝜓𝑙,𝛽) ̸= 𝐽(

⋀︀𝑘−1
𝑙=1 𝜓𝑙),

which is a contradiction.

We now show by induction on the structure of formulas that𝒱 and 𝐽 agree on sub(𝜙prop). This

holds by construction for atomic propositions. It is easy to deal with propositional connectives,

since we know that 𝐽(¬𝜓) = 𝒲 ∖ 𝐽(¬𝜓) and 𝐽(𝜓1 ∧ 𝜓2) = 𝐽(𝜓1) ∩ 𝐽(𝜓2) and similarly for

𝒱 . Assume inductively that 𝒱(𝜓) = 𝐽(𝜓). Suppose first that 𝑢 ∈ 𝐽(2𝑖𝜓). Then, either 𝑢 = 𝑤
and 𝜈(2𝑖𝜓) = 1 or 𝑢 ∈ 𝒲𝑗 and ℳP

𝑗 , 𝑢 |= 2𝑖𝜓. In either case we have that 𝐽(𝜓) ∈ 𝒩𝑖(𝑢).

Since 𝒱(𝜓) = 𝐽(𝜓), it follows that ℳP, 𝑢 |= 2𝑖𝜓, that is, 𝑢 ∈ 𝒱(2𝑖𝜓). Suppose now that



𝑢 ∈ 𝒱(2𝑖𝜓), that is, ℳP, 𝑢 |= 2𝑖𝜓, or, equivalently, 𝒱(𝜓) ∈ 𝒩𝑖(𝑢). Since 𝒱(𝜓) = 𝐽(𝜓) it

follows that either 𝑢 = 𝑤 and 𝜈(2𝑖𝜓) = 1 or 𝑢 ∈ 𝒲𝑗 and ℳP
𝑗 , 𝑢 |= 2𝑖𝜓. In either case we

have that 𝑢 ∈ 𝐽(2𝑖𝜓).
Since 𝜈(𝜙prop) = 1, we have that 𝑤 ∈ 𝐽(𝜙prop), and consequently 𝑤 ∈ 𝒱(𝜙prop). That is,

ℳP, 𝑤 |= 𝜙prop. The fact that ℳP
is a C𝑛

model follows from the definition of 𝒩𝑖. The fact

that ℳP
is a 𝜙-consistent model follows from the fact that 𝜈, used to construct the assignment

related to 𝑤, is 𝜙-consistent and the models ℳP
1 , . . . ,ℳP

𝑚, used to define the remaining worlds

in 𝒲 , are all 𝜙-consistent models.

Lemma 8 can be proved by adapting the proof of the previous lemma.

Lemma 8. A formula 𝜙prop is satisfied in a 𝜙-consistent N𝑛
model iff there is a 𝜙-consistent

valuation 𝜈 for 𝜙prop such that

1. if 2𝑖𝜓 is in sub(𝜙prop) and 𝜈(2𝑖𝜓) = 0, then ¬𝜓 is satisfied in a 𝜙-consistent N𝑛
model;

2. if 2𝑖𝜓1 and 2𝑖𝜓2 are in sub(𝜙prop), 𝜈(2𝑖𝜓1) = 1, and 𝜈(2𝑖𝜓2) = 0, then (𝜓1 ∧ ¬𝜓2) ∨
(¬𝜓1 ∧ 𝜓2) is satisfied in a 𝜙-consistent N𝑛

model.

We now show by induction on the structure of formulas that𝒱 and 𝐽 agree on sub(𝜙prop). This

holds by construction for atomic propositions. It is easy to deal with propositional connectives,

since we know that 𝐽(¬𝜓) = 𝒲 ∖ 𝐽(¬𝜓) and 𝐽(𝜓1 ∧ 𝜓2) = 𝐽(𝜓1) ∩ 𝐽(𝜓2) and similarly for

𝒱 . Assume inductively that 𝒱(𝜓) = 𝐽(𝜓). Suppose first that 𝑢 ∈ 𝐽(2𝑖𝜓). Then, either 𝑢 = 𝑤
and 𝜈(2𝑖𝜓) = 1 or 𝑢 ∈ 𝒲𝑗 and ℳP

𝑗 , 𝑢 |= 2𝑖𝜓. In either case we have that 𝐽(𝜓) ∈ 𝒩𝑖(𝑢).

Since 𝒱(𝜓) = 𝐽(𝜓), it follows that ℳP, 𝑢 |= 2𝑖𝜓, that is, 𝑢 ∈ 𝒱(2𝑖𝜓). Suppose now that

𝑢 ∈ 𝒱(2𝑖𝜓), that is, ℳP, 𝑢 |= 2𝑖𝜓, or, equivalently, 𝒱(𝜓) ∈ 𝒩𝑖(𝑢). Since 𝒱(𝜓) = 𝐽(𝜓) it

follows that either 𝑢 = 𝑤 and 𝜈(2𝑖𝜓) = 1 or 𝑢 ∈ 𝒲𝑗 and ℳP
𝑗 , 𝑢 |= 2𝑖𝜓. In either case we

have that 𝑢 ∈ 𝐽(2𝑖𝜓).
Since 𝜈(𝜙prop) = 1, we have that 𝑤 ∈ 𝐽(𝜙prop), and consequently 𝑤 ∈ 𝒱(𝜙prop). That

is, ℳP, 𝑤 |= 𝜙prop. The fact that ℳP
is 𝜙-consistent follows from the fact that 𝜈, used to

construct the assignment related to 𝑤, is 𝜙-consistent and the models ℳP
1 , . . . ,ℳP

𝑚, used to

define the remaining worlds in 𝒲 , are all 𝜙-consistent. The fact that ℳP
contains the unit is

by construction, that is, we defined ℳP
so that for all 𝑖 ∈ [1, 𝑛] and all 𝑤 ∈ 𝒲 , we have that

𝒲 ∈ 𝒩𝑖(𝑤). Thus, ℳP
is a 𝜙-consistent N𝑛

model that satisfies 𝜙prop, as required.

To determine satisfiability of𝜙prop in a𝜙-consistent model, we use Lemma 6 and the character-

izations above. To establish complexity results, we use the fact that there are only quadratically

many subformulas in 𝜙prop. Satisfiability in 𝒜ℒ𝒞 is ExpTime-complete and so, one can deter-

mine in exponential time whether a valuation is 𝜙-consistent. For an ExpTime upper bound,

one can deterministically compute all possible 𝜙-consistent valuations for (
⋀︀𝑘−1
𝑗=1 𝜓𝑗 ∧ ¬𝜓𝑘)

(or (𝜓1 ∧ ¬𝜓2)) and decide satisfiability of 𝜙prop by a 𝜙-consistent model using a bottom-up

strategy (as in [30]). Since satisfiability in 𝒜ℒ𝒞 is ExpTime-hard, our upper bound is tight.

Theorem 9. The C
𝑛|g
𝒜ℒ𝒞 and N

𝑛|g
𝒜ℒ𝒞 formula satisfiability problems on constant domain neigh-

bourhood models are ExpTime-complete.



5. Discussion and Future Work

In this paper, we have presented first results on reasoning in non-normal modal description

logics. After providing motivations and preliminaries for these logics, we have focused on the

following two aspects. First, we have introduced terminating, sound and complete tableaux

algorithms for checking satisfiability of multi-modal description logics formulas in varying

domain neighbourhood models based on classes of frames that characterise different non-normal

systems, that is, E𝑛, M𝑛
, C𝑛

, and N𝑛
. We have then studied the complexity of the satisfiability

problem restricted to fragments where modal operators can be applied to formulas only (thus

without modalised concepts) and interpreted on neighbourhood models with constant domains.

As future work, we plan to investigate along the following directions.

First, we are interested in adapting our tableau algorithms to check satisfiability of formulas

on neighbourhood models with constant domains. This requires to address the introduction

of fresh variables that do not occur in other previously expanded labelled constraints systems.

For instance, by applying the M𝑛
𝒜ℒ𝒞-rules to the 𝑛-labelled constraint system 𝑆𝑛 = {𝑛 :

3𝑖∃𝑟.𝐴(𝑥),2𝑖¬𝐴(𝑥)}, we obtain the 𝑚-labelled constraint system 𝑆𝑚 = {𝑚 : ∃𝑟.𝐴(𝑥),𝑚 :
¬𝐴(𝑥),𝑚 : 𝑟(𝑥, 𝑦),𝑚 : 𝐴(𝑦)}. The fresh variable 𝑦 in 𝑆𝑚 does not allow us to directly extract

a model with constant domain, since there would be no object in the domain of the world

associated with 𝑆𝑛 capable of representing 𝑦 correctly.

A possible solution could be to define a suitable notion of quasimodel [27], to equivalently

characterise satisfiability on constant domain neighbourhood models in terms of structures

representing “abstractions” of the actual models of a formula. The representation of domain

objects across worlds would be given in terms of suitably defined functions, called runs, to

guarantee that they are well-behaved with respect to their modal properties, and that they do

not violate the constant domain assumption. A similar approach is followed by Seylan and

Erdur [23] and Seylan and Jamroga [25, 26], with suitable “copies” of worlds introduced to

address the problem of the definition of runs. In these works, however, it is not made explicit

how such a definition should be carried out in detail. We conjecture that an approach based on

marked variables, as illustrated in Gabbay et al. [27], can be fruitfully adopted together with

quasimodels to solve the issue of a constant domain model extraction from a complete and

clash-free completion set for a formula.

In addition, we are interested in tight complexity results for L𝑛𝒜ℒ𝒞 formula satisfiability, with

respect to varying and constant domain neighbourhood models. It is known that 𝒜ℒ𝒞 formula

satisfiability is ExpTime-complete. However, we do not know whether the upper bound for

L𝑛𝒜ℒ𝒞 formula satisfiability problem on varying or constant domain neighbourhood models

can be improved to ExpTime-membership, for any L ∈ {E,M,C,N}. It has to be noted that,

at the propositional level, the formula satisfiability problem for the systems E, M, and N is

known to be NP-complete, with a rise to PSpace-completeness for systems containing C [29].

Finally, we plan to consider satisfiability in other combinations and extensions of non-normal

modal description logics. This would naturally lead us to consider both the straightforward cases

of MC, MN and CN of the classical cube [31], as well as other logics tailored to applications

in knowledge representation contexts. In particular, we intend to investigate non-normal modal

description logics in epistemic, coalitional, and deontic settings.
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