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Abstract 

The purpose of this study is to examine the uncertainty of a combined artificial neural 

network (ANN), kriging and fuzzy logic methodology, which can be used for spatial and 

temporal simulation of hydraulic head in an aquifer. This methodology was applied in 

the past, while the verification of the model was performed by implementing it in a new 

study area, in Miami – Dade County, FL, USA. The percentile methodology was applied 

as a first approach in order to define the ANN uncertainty. As a second approach, the 

uncertainty of the ANN training is tested through a Monte Carlo procedure. The model 

was executed 300 times using different training set and initial random values each time. 

The training results constituted a sensitivity analysis of the ANN training to the kriging 

part of the algorithm. The training and testing error intervals for the ANNs and the kriging 

prediction intervals calculated through this procedure can be considered narrow 

compared to the complexity of the study area. For the third and final approach used in 

this work, the uncertainty of kriging parameter was calculated through the Bayesian 

kriging methodology. The results derived can prove that the simulation algorithm can 

provide consistent and accurate results. 

1 Introduction 

Data driven models and statistical models have both been extensively used in groundwater 

modelling, especially in the last decades (Delbari, Amiri, & Motlagh, 2014; Maiti & Tiwari, 2014). A 

new concept allowed for the combination of two separate methodologies, Artificial Neural Networks 

(ANNs) and kriging for the spatial and temporal simulation of hydraulic head, in a large scale area. 

Moreover, the use of a fuzzy logic system, in order to connect these two methodologies, was proved 

effective, providing better simulation results (Tapoglou, Karatzas, Trichakis, & Varouchakis, 2014). In 

this study, the examined study area is small, but with a complex geological background. Simulation of 

the current and past states followed the same methodology as in the aforementioned work.  
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To provide also a measure of the uncertainty, an analysis comprising of three different 

methodologies were performed, corresponding to Kriging parameters for the first one and uncertainty 

derived by the ANNs for the two remaining. 

1.1 Simulation algorithm 

The simulation algorithm used in this work was based on the one presented in Tapoglou et al. (2014) 

and involved the use of ANNs, kriging and a fuzzy logic methodology in order to simulate the water 

table changes in a temporal and spatial scale. To summarize the conceptual framework, the ANN was 

used for the temporal simulation of the hydraulic head, while kriging was used for the spatial 

interpolation.  

The temporal simulation took place in multiple locations where data were available, diversifying 

the inputs as necessary in order to acquire the optimal ANN results. For every location with available 

hydraulic head data one ANN was developed. Data prerequisites included information on 

meteorological and hydrological parameters with a daily time step as input data, and hydraulic head 

measurements in the same time step as the output parameter. The selection of input parameters focused 

on those linked directly or indirectly to the water budget. The ANNs used available data for training 

and simulation of the current state, while the trained ANNs are also able to predict future status of the 

aquifer, when evaluating different scenarios.  

The results of all ANNs where subsequently interpolated using the kriging methodology. Initially, 

a simple ordinary kriging had been used and the linear, exponential and power-law variograms were 

tested. The interpolation was conducted in the convex polygon of the wells. This grid is a rectilinear 

grid, where all observation points fall exactly at a node. The nodes of the grid where observed data are 

not available are the prediction points. In order to exclude from the simulation grid nodes that fall far 

outside the study and far from any observation point, Delaunay triangles were created from the known 

data locations. Nodes that fell outside the area covered by at least one triangle were not considered as 

prediction points. 

In order to improve the initial results, a fuzzy logic system was used so as to combine the two 

methodologies. More specifically, the neighborhood used in kriging was defined through fuzzy logic, 

combining the distance between the prediction point and data points with the ANN training and testing 

error in every location. For every prediction point involved in the process and for every time step, a 

different variogram is calculated and the hydraulic head is simulated. A detailed description of the 

functionality and the initial methodology followed is found in Tapoglou et al. (2014). 

1.2 Uncertainty Methodology 

Model uncertainty can be attributed to many reasons. In this work, we have identified and grouped 

in two main categories the sources of uncertainty; uncertainty derived by the ANN training process and 

uncertainty due to the interpolation methodology.  

Monte Carlo simulation and bootstrap methods are very common and can give a perspective of the 

uncertainty involved. The objective of an uncertainty analysis is to show the effects of model inputs or 

parameters on the model simulation results (Eslamian, 2014). In this study, different methodologies 

were used, for the determination of uncertainty derived from different parts of the developed algorithm 

(Figure 1). As far as the ANN part of the simulation algorithm is concerned, two methodologies were 

followed; the percentile methodology and a Monte Carlo simulation for the uncertainty of the ANN’s 

training. The results of the second methodology became the input for the Kriging part of the algorithm, 

constituting a sensitivity analysis of the kriging interpolation method to the ANN training. Uncertainty 

due to the Kriging parameters is also studied using the Bayesian kriging methodology. 
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Figure 1: Methods tested in each simulation step 

1.2.1 Uncertainty in ANN results 

Uncertainty due to the ANN model has been extensively studied in the past, using both Bootstrap-

based methods (Kasiviswanathan & Sudheer, 2013; Trichakis, Nikolos, & Karatzas, 2011) and Monte 

Carlo simulation methods (Dehghani, Saghafian, Saleh, Farokhnia, & Noori, 2014; Jiang, Nan, & Yang, 

2013).  

In ANNs, the source of uncertainty may be attributed to two reasons; model structure and training 

data (Dybowski & Roberts, 2001). In this study the model structure is fixed and only the uncertainty 

derived from the training dataset is considered. This uncertainty can be attributed to not only the 

imperfection in data collection tools or techniques, but also to the available amount of training data and 

how representative of the reality they are. Moreover, not all the possible realizations of the variables 

involved are available in the training set, as well as the training set itself is only one of a large number 

of possibilities. In this study two methodologies were used for the calculations of the prediction 

intervals, the first one based on a statistical analysis and the second one using Monte Carlo simulation 

results.  

 

Percentile Prediction Intervals  
In this approach the prediction intervals can be calculated through the statistical characteristics of 

the model errors that occurred when reproducing the observed in the field data (Shrestha & Solomatine, 

2006).  

This approach takes a large number of simulated parameters of interest and orders them from 

smallest to largest. A 90% Prediction Interval (PI) is then computed by identifying the lower PI as the 

5th percentile and the upper PI as the 95th percentile. This leaves 90% of the simulated estimates within 

this range, while dividing the remaining 10% of the simulated values equally into the upper and lower 

tails. The advantage of this method is that it does not make any distributional assumptions and it does 

not require the distribution to be symmetric. However, evaluating the PI using this methodology yields 

larger confidence intervals compared to other methodologies. 

 

Monte Carlo method 
Conventionally, a single ANN is developed through training and once completed the ANN 

parameters are considered fixed. Such an ANN becomes deterministic model where a given input data 

vector will always produce a specific output value. In order to calculate the uncertainty in this 

prediction, Monte Carlo methods can be used, which are typically computer based techniques for brute 

force numerical simulation of probabilistic processes.  
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The uncertainty of the ANNs results in this case can be assessed mainly by the random initialization 

of values (i.e. the ANN synaptic weights), as well as in the random selection of training and testing 

datasets. In order to investigate the uncertainty in the predictions of the ANN, multiple different 

executions of the algorithm, with random initial values for the neural weights and different training and 

testing sets were performed. The examination of the uncertainty attributed to the architecture and 

structure of the ANNs would require large computational cost, hence it is not examined in this study. 

1.2.2 Uncertainty in Kriging results 

The uncertainty of the kriging algorithm was evaluated following two separate methodologies. The 

first one included the use of the Monte Carlo results of the ANN uncertainty analysis and can be 

characterized also as a sensitivity analysis of the kriging to the ANN training. The second methodology 

followed is the one of Bayesian kriging, which can be used to estimate the uncertainty due to the kriging 

parameters.  

 

Monte Carlo method 

In this case the results of the Monte Carlo simulation in training the ANNs were used. More 

specifically the multiple different training results (different neural weights) were used for the evaluation 

of the hydraulic head, resulting in multiple different values for every timestep and for every prediction 

point. Using the 5th and 95th percentile it is possible to determine the 90% prediction interval. These 

results where then passed forward to the kriging part of the algorithm, generating a range within which 

the simulation results are, for every prediction point and time step separately. 

 

Bayesian kriging 
The process of interpolating spatial data using kriging can be realized in two steps. First, the 

covariance function/semivariogram is calculated and then the kriging interpolation takes place. When 

using the classical approach the assumption that the model parameters are known is made, and the 

uncertainty in the calculation of range and sill is considered as minimal. The purpose of the Bayesian 

kriging is to quantify the uncertainty of these parameters and hence the uncertainty of the covariance 

estimation. In Bayesian kriging (Pilz & Spöck, 2008) the posterior distribution of the parameters 

involved (semivariogram and/or transformation parameters) is specified by means of simulations, 

which corresponds to the uncertainty of covariance parameters. 

In order to implement Bayesian kriging methods, first the appropriate variogram model must be 

fitted to the experimental data, using the standard procedure followed when using the variogram 

estimation (1st step in kriging interpolation methodology).  Using the parameters derived and the 

covariance function of the model, the covariance matrix is constructed. A common method for testing 

a statistical model is the use of artificial data. In order to do so, a set of properties have to be embedded 

in the dataset and then the model must be examined for the presence of these effects and how they 

behave under different experimental conditions.  

Uniform random numbers generation is the first step in this procedure. A generally approved method 

of correlating random numbers, with a known covariance matrix (𝐶), is by finding a matrix 𝑈, by using 

decomposition method. Matrix decomposition is commonly used in Monte Carlo method for simulating 

systems with multiple correlated variables. Using this matrix, correlated random numbers 𝑅𝑐  can be 

generated from uncorrelated numbers 𝑅, by multiplying them with this matrix 𝑈. These correlated 

random values have the same statistical characteristics with the initial, observed in the field data. These 

random values are then fitted into a variogram and the value in an unknown location is estimated using 

kriging. Cholesky decomposition is one way of providing there random correlated values. The 

covariance matrix of a vector 𝑌 can be given as 𝐶 = 𝐸(𝑌𝑌𝑇) . If 𝑋 is a random vector, consisting of 

uncorrelated random values uniform in [0,1], then 𝐸(𝑋𝑋𝑇) = 𝐼. The Cholesky decomposition of the 
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correlation matrix is given as 𝐶 = 𝐿 ⋅ 𝐿𝑇. Note that it is possible to obtain a Cholesky decomposition of 

𝐶 since by definition the covariance matrix 𝐶 is symmetric and positive definite.  

The distribution of the simulated values using the kriging of different correlated random values can 

be used in order to derive the confidence intervals of the process. In this way the distribution of the 

parameters involved (sill, range etc.) in the process is used as a prior knowledge, while the posterior 

distribution reflects the uncertainty of the covariance estimation (Pilz & Spöck, 2008).  

2 Study Area 

The area in which the proposed methodology is applied is located in Miami – Dade County, Florida, 

USA (USGS, 2017; Fish & Stewart, US Department of the Interior, US Geological Survey). A total 

number of 30 wells within Biscayne aquifer inside or around the urban area of Miami where used for 

the water table simulation. The data available covered the time period from 25/4/2010 to 22/2/2014, 

with daily timestep and included the hydraulic head, the discharge and water level in four nearby rivers 

and meteorological data from two stations. The data used in this study regarding water levels were 

acquired through United States Geological Survey (USGS), while the meteorological data from the 

National Climatic Data center of the National Oceanic and Atmospheric Administration (NOAA). All 

the data used were directly or indirectly linked to the aquatic equilibrium.  

3 Results 

3.1 Preprocessing of available data 

An important factor that can easily be neglected when choosing ANN parameters is that of the time 

lag; i.e. the time between an event happening (for example a rainfall occurance) and the appearance of 

its effect in the dataset. The correlation coefficient between time series A for a parameter and time series 

B for the hydraulic head change can be used to determine the optimal lag between the parameter and 

the hydaulic head change. 

The highest correlation lagged parameters will be used as input to the ANN. The input parameters 

to the ANNs were a combination of the parameters with the best correlation coefficient. For each one 

of the ANNs, the input parameters used are the Precipitation for 2 meteorological station (3 days), the 

soil and air temperature, the humidity, the surface water levels from 2 stations (2 days) and the discharge 

from 1 station (best  correlated day). 

There isn’t a universal rule about the optimal architecture of an ANN. However, according to the 

rule of Fine (1999), using three times as many training patterns as network parameters (weights) is 

adequate to achieve good generalization. Taking into account that 9 input parameters were used, 1 

output and 1100 training sets, two architectures were examined; the first one with 1 hidden layer with 

32 hidden nodes (Architecture 1) and the second one with 2 hidden layers with 17 and 12 hidden nodes 

respectively (Architecture 2). 

Three variogram models were tested for the best architecture as well, the linear, the exponential and 

the power-law, in order to choose the most appropriate for the data at hand. These variograms were 

chosen in order to have one variogram model per type; the most simple models, the linear, one 

differentiable, the exponential, and one non-differentiable, the power-law. 
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3.2 Simulation results 

The ANNs performances for each one of the two possible architectures (Architecture 1 - 1 hidden 

layer with 32 hidden nodes and Architecture 2- 2 hidden layers with 17 and 12 hidden nodes) are 

presented in terms of Root Mean Squared Error (RMSE) in Table 1. 

 

RMSE (m) Architecture 1 Architecture 2 

Average Training Error 1.16·10-3 6.63·10-4 

Average Testing Error 1.20·10-3 7.92·10-4 

Maximum Training/Testing Error 2.19·10-3/3.42·10-3 1.78·10-3/2.98·10-3 

Minimum Training/Testing Error 2.46·10-4/2.63·10-4 2.23·10-4/1.26·10-4 

Table 1: Training and testing RMSE for 2 architectures 

In terms of average minimum and maximum values the second architecture has better results, both 

for the training and testing error. In order to evaluate the performance of the each one of the 30 ANNs 

developed they were divided into three categories, depending on their training and testing RMSE 

performance. The first category includes the ANNs with the best performance (training RMSE=2.77·10-

4 m, testing RMSE=3.13·10-4 m, NSE=0.69), represented by well 11. The second category has average 

results, represented by well 3 (training RMSE=5.68·10-4 m, testing RMSE=4.19·10-4 m, NSE=0.65), 

while the third category has the worst RMSE results amongst the ANNs studied (training 

RMSE=1.11·10-3m, testing RMSE=6.23·10-4m, NSE=0.58). It should be noted that the NSE values are 

not very close the optimal value, which equals one (𝑁𝑆𝐸𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 1 ). This can be attributed to the low 

hydraulic head values that should be simulated by the model. As indicated by Schaefli and Gupta 

(2007), it is not possible to achieve very high NSE values when simulating small absolute values, 

however it is an indication of the performance of the model.  

The second part of the algorithm includes the fuzzy logic use for the neighborhood definition and 

the kriging interpolation. The number of neighbors for each prediction point is set to 20. This number 

should be chosen carefully so as to allow for the 30 pairs per distance class, which according to Journel 

and Huijbregts (1978) are necessary is order to acquire a good fitting of the experimental variogram to 

the theoretical model.  

To evaluate the results, cross-validation was performed for all three variograms studied. For every 

data point, for 10% of the time steps the observed in that point data were ignored, and the algorithm 

follows as if the data point does not exists.  In this way three values are available; the observed in the 

field, the ANN simulated and the kriging simulated. In the end of the process, the kriging simulated 

values are compared to the real and ANN simulated, in order to derive an independent measure of 

performance. The kriging interpolation tends to correct any misjudgements of the hydraulic head 

performed by the ANNs, improvement that is also reflected on the error indicators. More specifically, 

The RMSE, NSE and MAE values of the data used for the cross validation when using ANNs are  0.77, 

0.58 and 0.59 while when using ANNs together with kriging are 0.49,0.8 and 0.41 respectively 

3.3 Uncertainty results 

ANN prediction confidence intervals  
Using the initial simulation results it is possible to calculate the maximum difference between 

observed and simulated values. By applying the 95% and 5% percentile error to all simulated values 

the 95% and 5% percentile of the simulation results can be calculated. The results for the three 

representative wells are presented in Figure 2. While the 90% prediction intervals were constructed 

using the training dataset, this doesn’t necessarily mean that the testing data will always fall within 
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these intervals as well. In most cases, especially in wells 3 and 18, the observed values fall within the 

90% prediction interval of the ANN prediction for the testing dataset. In well 11 in few exceptions, and 

more specifically at some of the lowest observed values, the real values do not fall within the prediction 

interval. The coverage of these intervals with respect to the observed values was 82% for well 11, 75% 

for well 3 and 79% for well 18.  

 
Figure 2: 90% confidence intervals for ANN simulation 

ANN training model uncertainty 
In order to evaluate the uncertainty of the ANNs training, the process described in section 2.2.1 was 

performed 300 times, with each case having different training and testing data set, as well as different 

initial random neural weights. For all wells used, the results of this process can be summarized in Figure 

6, for the training and testing error respectively. The training error range, as expected, is smaller than 

the testing in most of the cases (26/30 wells). The results in terms of the representative wells are 

calculated and presented, together with the observed in the field values, in Figure 3.  

 

 

Figure 3: Training and testing error range for training uncertainty for 30 wells 

For well number 11, the 5.5% of the observed values are outside the 90% prediction interval. As the 

ANN performance deteriorates this percentage grows, to 9.1% for well 3 and 11.2% for the worst 

performance ANN for well number 18.  The average width of the prediction intervals for each one of 

the representative wells are 0.153 for well 11, 0.243 for well 3 and 0.452 for well 18. By comparing the 

prediction intervals widths for the two different methodologies it can be noted that the uncertainty 

derived for the training of the ANNs is only a small fraction of the model uncertainty calculated through 

the percentile methodology. This may also be attributed to the coarse nature of calculations in the 

percentile methodology.  

 

Uncertainty in hydraulic head change due to kriging parameters 
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For every prediction point and time step, 500 different data samples and hence 500 different 

variograms where constructed. The uncertainty was calculated for the algorithm with the use of 20 

neighbors defined by the fuzzy logic system and for the exponential variogram. The 90% prediction 

intervals (blue range) together with the prediction derived from the initially simulated values (red lines) 

for 3 prediction points are presented in Figure 4. 

 

 
Figure 4: Kriging parameter uncertainty for three prediction points 

In all cases the uncertainty of the results, derived from using the described methodology, can be 

characterized as small, hence the model is consistent and reliable and can be used successfully for the 

hydraulic head simulation in an aquifer. 

4 Conclusions 

In the present study, an uncertainty analysis is performed on a combined ANN-Fuzzy logic-kriging 

methodology for the hydraulic head simulation of an aquifer. The initial simulation of the hydraulic 

head in a complex study area, in Miami, Dade County, FL, USA had average RMSE training error  m, 

average RMSE testing error  m and cross validation RMSE of 0.962m. The uncertainty analysis proved 

that the methodology used is both consistent and accurate, especially considering the complexity of the 

case study and the methodology involved.  

Using the percentile methodology, the ANN uncertainty can be calculated. In this case the 90% 

prediction intervals are wider than those produced by all other methodologies involved in this study. 

This can be attributed to the coarse nature of the calculations in this methodology. 

Monte Carlo method for assessing the uncertainty attributed to the ANN training and consecutively 

for sensitivity analysis of the kriging results to the ANN training is also performed. The range of training 

and testing error varied, without, however, having a large effect on the 90% prediction interval of the 

hydraulic head, in locations where data were available. The 90% prediction interval of the hydraulic 

head is also depicted in 4 prediction points, having narrow intervals in all cases. 

Kriging parameter uncertainty reflects the uncertainty attributed to the observed data used. Using 

artificial data and the Bayesian kriging methodology, this aspect is examined. The results in terms of 

predicted hydraulic head intervals are close to the simulated results using the real data.  

All the above mentioned uncertainty calculations indicate that the methodology used can provide 

consistent and reliable results under various conditions, hence it can be used for groundwater level 

simulation, especially in complex study areas where geological information are obscure, making 

conventional modelling unsatisfactory.   
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