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Abstract

For predicting cardiovascular diseases, mathematical modelling of the cardiovascular
system has been proven to be a powerful asset. The governing idea is to analyse it through
compartments as multiple connected subsystems with inputs and outputs. In this paper,
models were identified for four subsystems of input-output sequence (left ventricle - left
atrium - ascending aorta - descending aorta - left common carotid artery) by modelling
frequency response. The data set used for model identification consisted of blood pressure
during four consecutive heart contractions of four circulatory segments from clinical trials
performed on a pig. The goal is to discover a linear model with a non-integer order that
succinctly represents the process, outperforming high-order autoregressive exogenous input
(ARX) integer models. This model identification occurs non-parametrically, aiming to
achieve the best smooth fit in the frequency domain by minimizing the difference between
real measurements and model predictions using the particle swarm optimization (PSO)
algorithm.

1 Introduction

Since being introduced as a tool for modeling tissue viscoelasticity [2], fractional calculus (FC)
has been recognised as a powerful apparatus in modelling and control of numerous engineering
systems. Given that living organisms are among the most complex systems known, FC found
its use in medicine and biology.

Fractional modelling in medical research. Due to its non-local properties and necessity
of a know-how approach in medical research, FC has been greatly utilised for biomedical phe-
nomena. For example, the branch of fractional mathematical oncology offers various options
for modelling response to treatment, potential tumour growth, metastasis etc. as shown in [18].

The importance of tumor mathematical models is reflected in the need for a better under-
standing of cancer proliferation and, consequently, more personalized and efficient treatment.
When it comes to tumour growth modelling, superiority of fractional order models over integer
order equivalents has been shown on multiple commonly used models. Namely, in one study
[1], mean squared error of fractional order models was reduced by at least half when compared
to integer equivalents.
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Overall, fractional order generalisation of classical mathematical models is demonstrating
huge potential. In addition, to accentuate specific features of cancer dynamics, integration
of control theory and mixing stochastic and fractional calculus are proposed and therefore
represent a new direction towards finding a suitable model to describe various cancer.

Although fractional mathematical oncology does represent a booming area of FC application,
modelling healthy tissues and organ systems as basis for understanding pathologies is also a
significant part of research on non-integer mathematical modelling.

For example, two main characteristics that make the respiratory system suitable for FC are
geometric structure from which an electrical analogue can be derived, and tissue structure (the
viscoelasticity of lung parenchyma), from which an mechanical analogue can be derived.

In this case, classical integer-order modelling resulted in a very high-order impedance model,
while low-order fractional order model performed accurately over the range of frequencies sig-
nificant for the respiratory system. That model can be used for understanding the pathophys-
iological mechanism of pulmonary diseases and their diagnosis more easily [6]. In addition, the
fractal nature of certain structures and organ structure-function relation is better understood
due to their connection to FC. In the respiratory system, structure of pulmonary tree is linked
with lung tissue mechanics in way easily describable with FC as shown in [5].

Modelling of cardiovascular system. In modeling macrocirculation, lumped parameter
models are often preferred over distributed models because they showcase the complexity of
the cardiovascular system (CVS) while relying on a minimal set of parameters. However, it is
important to note that these models do not account for the anatomical layout of the vessels
and, therefore, cannot represent certain characteristics.

One of the most popular models is two-element WindKessel (WK) model and its modifi-
cations. It depicts systemic vascular circuit in which capacity describes the intake of blood
volume into the arterial system as a response to the increase of pressure, and resistance repre-
sents relation between reduction in average pressure from the arterial side to the venous side
and cardiac output [4]. The importance of these models is reflected in their wide usage in
predicting cardiovascular pathologies. Studies have shown the reliability of WK models for
estimating blood pressure by predicting arterial blood pressure waveform [15, 20].

In addition, it is common to use multi-compartment lumped models for modelling the car-
diovascular network because of its computational efficiency which creates space for potential
patient-specific modelling. There is a variety of information that can be gained by adding ele-
ments that represent compartments where pathologies can be detected. For example, authors
in [17] opted for extension of classical WK model when modelling atherosclerosis as one of the
main risk factors for cardiovascular diseases.

The aim of the paper is to question whether the fractional or integer model is more suitable
for representing the dynamics between compartments of the cardiovascular circulatory system.
By obtaining frequency-domain characteristics of the discrete-time model of sufficiently high
order, the structure of the fractional-order model can be identified. This suggests that the
appropriate model structure is not known in advance. Unknown model parameters are obtained
through non-parametric frequency-domain identification by minimizing the difference between
actual measurements and predictions using the particle swarm optimization (PSO) algorithm.

The paper is organized as follows. Section 2 gives an overview of cardiovascular circulatory
system and its compartments. Within Section 3 the identification and modeling approaches
carried out for both integer and fractional models are explained. By comparing simulation
results and experimental data, model’s capabilities are examined as explained in Section 4.
Finally, in Section 5, conclusions are drawn.
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2 Compartments of cardiovascular circulatory system

The main function of the cardiovascular circulatory system is to provide blood supply to all the
parts of a body. In the blood, oxygen and nutrients among other substances are distributed
and,therefore, the cardiovascular system represents vital system of organs. Besides blood, the
CVS consists out of heart and blood vessels. Within the system, two types of circulation i.e.
loops are present. Systemic circulation transports oxygenated blood from the heart to the rest
of the body and returns deoxygenated one back to the heart. In addition to systemic circulation,
pulmonary circulation exists to oxygenate blood by transporting it through the lungs.

2.1 Blood flow in CVS

The heart directs blood flow through the aorta for systemic circulation or through the pul-
monary artery for pulmonary circulation, thereby connecting the two circulations. Through
the pulmonary veins, oxygenated blood enters the heart. When it contracts, blood is squeezed
from the left atrium to the left ventricle throughout the mitral valve. The thickest chamber
in heart, the left ventricle, generates force to push the blood into the biggest artery in human
body, the aorta.

The part of aorta directly connected i.e. the upward portion of aortic arch is the ascending
aorta. Afterwards, one portion of the blood is directed towards neck and head via left common
carotid artery and two other arteries and rest of it continues to flow into the descending aorta.
It supplies blood to major abdominal organs (via the abdominal aorta) and some organs within
the thorax (via the thoracic aorta) [3].

In Figure 1 blood flow between the compartments of interest in this paper is shown. In
addition, numeration of the subsystems that will be described in Section 2.2 is marked. It is
important to note that types of vessels used in this paper, arteries, receive the highest blood
flow pressure and have high pressure values.

Left atrium Left ventricle Ascending aorta Descending aorta

Left common carotid artery

1 2 3

4

Figure 1: Blood flow throughout the observed compartments with marked subsystems.

2.2 Blood pressure in CVS

Blood pressure (BP) represents force per unit area that blood exerts on the walls of blood
vessels, and its value is determined by relative distance from the aortic arch and time [13].
Unlike blood flow, BP can be used directly for detecting a number of medical conditions such
as arrhythmia, hypovolemia etc.

The connection between two quantities is the stretch of the walls of the arteries by the volume
they contain. The slope of the pressure–flow line and its relevance has been thoroughly explained
in [12]. In this paper, the authors have chosen blood pressure as a quantity representing the
input and the output of the compartment modeled due to its diagnostic value and simplicity.

111



Non-integer Modelling of Cardiovascular Compartments Janković and Kapetina Radović

Variations in systolic pressure among different cardiovascular compartments occur because
of the compliance of the large arteries. The BP value also depends on the stage of the cardiac
cycle observed. For example, ventricles and atriums experience greater change in volume during
systole and diastole and therefore have bigger variation of BP throughout cardiac cycle [19].

3 Mathematical modelling

As previously mentioned, the aim is to determine the superiority of fractional order models
over traditional integer-order models in representing the dynamics of the cardiovascular system.
Fractional models, which allow for non-integer differentiation, are particularly appealing due to
their ability to model systems with memory and hereditary properties of physiological systems
that are often missed by integer-order models. They enable modeling of systems with non-local
memory effects and a more flexible response to inputs.

One of the key advantages of fractional-order models is their capacity to represent frequency
responses that are not restricted to integer multiples of the standard 20 dB/decade slope seen
in integer-order systems [14]. In traditional integer-order systems, the Bode plot slopes are
integer multiples of 20 dB/decade for each pole or zero. However, fractional-order systems
exhibit slopes that can vary continuously, reflecting more complex dynamics and allowing for a
finer-grained analysis of system behavior [16]. To validate the effectiveness of fractional models,
an integer-order model is first identified and used as a baseline for comparison.

In this case, an integer-order discrete-time ARX model is used due to its ability to provide a
non-parametric identification of the system without imposing a predefined model structure [11].
The non-parametric identification performed with the ARX model is advantageous because it
eliminates the need to impose constraints based on prior assumptions about model structure.

Once the ARX model is identified, its frequency characteristics are analyzed, which helps
derive the structure of the fractional-order model. Fractional models, characterized by non-
integer derivatives, often provide a more nuanced representation of real-world systems that
exhibit memory and hereditary properties.The approach to mathematical modelling taken in
the paper has been thoroughly explained in [8, 9], but essential steps are:

1. Identifying discrete-time high-order ARX model. A high-order ARX model is
developed to fit time-domain data accurately while minimizing sensitivity to disturbances.

2. Determining the structure of fractional model by analysing frequency charac-
teristic of previously obtained ARX model. The frequency characteristics of the
ARX model are analyzed to derive a fractional model structure that better captures the
system’s dynamics.

3. Parameter identification using global optimization technique such as PSO al-
gorithm. The fractional model’s parameters are estimated by fitting both the magnitude
and phase characteristics of the system, utilizing the PSO algorithm.

In the following subsections, steps towards obtaining the fractional model have been described
in more detail.
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3.1 Integer order model identification

The first step involves identifying a discrete-time high-order optimal ARX model, which serves
as an integer-order representation of the cardiovascular system. The general form of the ARX
model is

A(q)y(k) = B(q)u(k − d) + e(k), (1)

where y(k) is the output at time k, u(k − d) is the input signal delayed by d time steps. e(k)
is the error or disturbance term, A(q) and B(q) are polynomials in the forward shift operator
q of orders n and n− 1 where n is empirically chosen to be sufficiently large. The parameters
of the ARX model structure are estimated using the least squares method.

By using high-order ARX models, fitting time-domain data is performed while preventing
issues related to sensitivity to noise and disturbances. In particular, high-order models are well-
suited for over-parameterized situations, where the goal is to fit time-domain data with high
accuracy. However, this model is an intermediate step toward obtaining the fractional model.
Therefore, the ARX structure is deliberately over-parameterized to ensure sufficient flexibility.

3.2 Non-integer identification, frequency analysis and optimization

The process of non-integer (fractional) modeling begins by analyzing the frequency character-
istics of the previously obtained high-order integer ARX model, GARX(jω). This analysis is
crucial for understanding the system’s dynamics in the frequency domain. ARX models offer a
regularized representation of the system’s frequency response, providing a structured and stable
framework for analysis.

While theoretically possible, determining frequency characteristics by computing the ratios
of Fourier transforms of the output and input is often numerically unstable and impractical.
The ARX model helps avoid these issues by offering a reliable estimate of the system’s frequency
response. Based on the frequency characteristics derived from the ARX model, we hypothesize
a fractional-order model designed to match the same frequency response. This model leverages
insights from the ARX analysis to accurately capture the system’s dynamics with fractional-
order flexibility, offering a more precise and interpretable representation compared to direct
Fourier transform-based approaches.

By examining the Bode diagrams of GARX(jω), we can postulate the structure of the
fractional model. Typically, the Bode plots reveal critical frequencies with slopes that deviate
from integer multiples of the standard 20 dB/decade. We discard non-physiological values to
focus on the relevant characteristics for the cardiovascular system. The Bode diagrams also
allow us to approximate the number of slope changes, which indicates the potential number of
poles and zeros in the system needed to fit the observed frequency response.

In fractional-order models, the effects of poles and zeros on the slope differ from that in
integer-order models. Each pole typically causes a decrease in slope by α ×20 dB/decade,
where α is the fractional order of the pole. Conversely, each zero causes an increase in slope by
α ×20 dB/decade. This continuous variation in slopes, rather than discrete changes, reflects
the more nuanced dynamics captured by fractional-order models.

After assuming the structure of the fractional model GFO(jω) , the next step is to estimate
its parameters. The goal is to ensure that the frequency response of the fractional-order model
aligns closely with that of the ARX model in the frequency region of interest. This alignment
ensures that the fractional model accurately represents the system’s dynamics in the ARX
model.
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To achieve this, we employ optimization techniques to fit the fractional model’s parameters such
that the magnitude and phase characteristics of GFO(jω) closely match those of GARX(jω) in
the frequency region of interest. This process involves minimizing a cost function that quantifies
the discrepancy between the fractional and ARX model responses:

J =

ωmax∑
ω=ωmin

|2010 log (|GFO(jω, p)|)− 20 log (|GARX(jω, p)|)|

+

ωmax∑
ω=ωmin

| ̸ GFO(jω, p)− ̸ GARX(jω, p)|+ 1000

n∑
i=1

(p < 0).

(2)

The cost function consists of three components: first, the magnitude discrepancy, which is the
sum of the absolute differences in the magnitude (in dB) between the two models over the
frequency range from ωmin = 0.1 rad/s to ωmax = 100 rad/s; second, the phase discrepancy,
which measures the absolute difference between the phase of the two models over the same
frequency range; and third, a penalty term that applies a large penalty (1000) when any of the
parameters p of the fractional model GFO(jω, p) is negative, ensuring physically meaningful
solutions. The angular frequencies ω are distributed uniformly on a logarithmic scale in the
range from ωmin = 0.1 rad/s to ωmax = 100 rad/s, with N = 100 points. The parameter n
represents the number of parameters of the fractional model. Given the complex and non-convex
nature of the problem, a global optimization algorithm is employed. Specifically, a variant of
the Particle Swarm Optimization (PSO) algorithm, known as Generalized PSO (GPSO), is used
as described in [7].

3.2.1 Generalized particle swarm optimization

The main objective of PSO is to explore the search space using a swarm of particles, each
representing a potential solution, [10]. Each particle is characterized by its current position x[k]
and velocity v[k], the latter being the difference between the current and previous positions.
Initially, positions and velocities are randomly assigned.

At each iteration, particles update their positions based on two key values: the particle’s
personal best (pbest) p[k] and the swarm’s global best (gbest) g[k]. The new velocity for each
particle is calculated as:

v[k + 1] = w · v[k] + cp · rp[k](p[k]− x[k]) + cg · rg[k](g[k]− x[k]), (3)

where w, cp, and cg represent the inertial, cognitive, and social components, and rp and rg
are random numbers in the range [0, 1]. The particle’s position is updated by: x[k + 1] =
x[k] + v[k + 1].

Here, the Generalized PSO (GPSO) algorithm is used. GPSO is inspired by linear control
theory, and the swarm is treated as a second-order dynamical system. The position update is:

x[k + 1] = 2ζρx[k]− ρ2x[k − 1] +
(
1− 2ζρ+ ρ2

)
(cp[k] + (1− c)g[k]), (4)

where ρ is the damping factor (decreasing from 0.95 to 0.6, as noted in [7]), and ζ is an
oscillation factor, randomly selected from [−0.9, 0.6]. In this study, the GPSO proposed in
[7] is used to obtain optimal parameters for a fractional-order model that accurately fits the
frequency characteristics of the cardiovascular system. The algorithm explores the parameter
space, adjusting the fractional-order model’s parameters to minimize the error between the
model’s frequency response and the target frequency characteristics. GPSO operates in an n-
dimensional space, providing flexibility and control through its damping factor ρ and oscillation
factor ζ, ensuring model achieves the desired fit.
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4 Results

4.1 Database description

Since pigs and humans have similar cardiovascular anatomy, experimental data from a clinical
trial on a pig, as described in [17], was used for the system’s input and output signals. In this
trial, pressure values were measured for left ventricular pressure LV P (t) (mmHg), left atrial
pressure LAP (t) (mmHg), descending aorta pressure AP (t)(mmHg), ascending aorta pressure
AoP (t) (mmHg), and left common carotid artery pressure LCP (t) (mmHg).

All signals were recorded with a sample time of 4 ms, and each time series covers 4.5 seconds.
Due to the relatively short duration of the data for robust system identification, all signals were
duplicated to extend their length, enabling better observation of the system’s behavior. The
data represent the normal steady-state behavior of the pig’s cardiovascular system.

Since the focus of the linear model is on signal variations rather than the specific working
point, the offset was removed, as the working point itself was not crucial for this stage of the
analysis. In Figure 2, the experimental data is shown as input (blue line) and output (orange
line) signals of four subsystems in the time domain.
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(a) Left atrium - left ventricle subsystem.
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(b) Left ventricle - ascending aorta subsystem.
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Figure 2: Experimental data as input and output signals of subsystem.

4.2 Model identification overview

As previously described, the ARX identification algorithm is applied to pairs of input and output
signals from the dataset that represent different subsystems of the cardiovascular system. In
the data preprocessing stage, the output signal was manually shifted and aligned with the input
signal, thereby setting the delay parameter d explicitly. This adjustment allowed us to simplify
the identification process by removing the need to estimate an additional delay during the ARX
model fitting. Consequently, during the ARX identification procedure outlined in Subsection
3.1 and implemented in the MATLAB software package, the lag parameter d was fixed at zero,
enabling a focus solely on optimizing the parameters na and nb for model accuracy. The results
for ARX models across four subsystems are summarized in Table 1, where the model fit to
the estimation data, the final prediction error (FPE), and the mean squared error (MSE) are
reported as indicators of the model’s performance.

In the subsequent analysis, we present the results for each subsystem, beginning with the
parameters of the identified high-order ARX models. The frequency response of these ARX
models is analyzed to inform the formulation of fractional-order model structures. Based on the
observed slopes and behavior, the fractional-order models are derived. Parameter identification
for the fractional models is conducted using a PSO algorithm with a particle swarm size of 200
and a maximum of 1000 iterations. These steps, implemented in MATLAB, produce the final
results for each subsystem.
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Subsystem n Delay in sam-
ples (approxi-
mate seconds)

Fit to es-
timation
data

FPE MSE

(1) Left atrium - left ventricle 8 64 (≈ 0.256 sec) 72.43% 0.0179 72.7
(2) Left ventricle - ascending
aorta

9 13 (≈ 0.052 sec) 53.11% 0.0665 6.3

(3) Ascending aorta - descending
aorta

15 13 (≈ 0.052 sec) 56.68% 0.0167 14.7

(4) Ascending aorta - left carotid
artery

8 15 (≈ 0.06 sec) 54.64% 0.0365 7.1

Table 1: ARX models parameters. Note: The column with delay is calculated during the data
preparation process.

Note: The ARX model’s linear nature does not fully account for nonlinear dynamics, which
introduces some error, especially around signal peaks. This trade-off results in a mean squared
error (MSE) that, although relatively high, is reasonable given the context. The model still
satisfactorily captures the essential shape and trend of the data, offering a balance between
simplicity and practical interpretability.

4.2.1 Subsystem 1: left atrium - left ventricle

Considering the discrete-time representation (1) of ARX model given in previous section, the
polynomials A and B for subsystem 1 are:

A(z) = 1− 4.687z−1 + 7.76z−2 − 4.439z−3 − 1.52z−4 + 1.333z−5 + 1.987z−6 − 1.961z−7,

B(z) = 3.31− 15.43z−1 + 25.65z−2 − 14.24z−3 − 5.092z−4 + 4.342z−5 + 6.3z−6 − 6.404z−7.

The optimal ARX model is obtained with 20 parameters in total. In Figure 3a comparison
between the time-domain responses provided by the ARX model and experimental data is
given. By observing relevant part of frequency characteristic of the ARX model as seen in Fig.
3b the following model structure is obtained:

G(s) = k

(
s
ω1

+ 1
)α1(

s
ω2

+ 1
)α2

, (5)

in which model parameters ω1, ω2 are critical frequencies and corresponding orders α1, α2 with
their values given in Table 2 and frequency characteristic of both models in Fig. 4.

k α1 ω1 α2 ω2

19.269064 1.172491 15.153801 1.687439 41.783736

Table 2: Optimal parameters of the fractional-order model (fitness function from eq. (2),
J = 16.1859).
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(a) Time-domain response comparison between ARX model and experimental data.
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Figure 3: ARX model results for subsystem 1.

10
-1

10
0

10
1

freq [rad/s]

15

20

25

m
a

g
n

it
u

d
e

10
-1

10
0

10
1

freq [rad/s]

-0.6

-0.4

-0.2

0

0.2

p
h

a
s
e

 [
ra

d
]

ARX model

fractional model

I: Left atrium, O: Left ventricle

Figure 4: Frequency-domain comparison between ARX and fractional-order model.
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4.2.2 Subsystem 2: left ventricle - ascending aorta

Considering the discrete-time representation (1) of ARX model given in previous section, the
polynomials A and B for subsystem 2 are:

A(z) = 1− 2.932z−1 + 2.484z−2 − 0.1646z−3 − 0.186z−4 − 0.2255z−5

− 0.158z−6 + 0.1517z−7 + 0.05983z−8 − 0.02952z−9,

B(z) = 0.436− 1.4z−1 + 1.344z−2 − 0.1411z−3 − 0.1494z−4 − 0.1719z−5

− 0.1217z−6 + 0.3143z−7 − 0.1096z−8.

The optimal ARX model is obtained with 18 parameters in total. In Figure 5a comparison
between the time-domain responses provided by the ARX model and experimental data is
given. By observing relevant part of frequency characteristic of the ARX model as seen in Fig.
5b the following model structure is obtained:

G(s) = k

(
s
ω1

+ 1
)α1(

s
ω2

+ 1
)α2

(
s
ω3

+ 1
)α3

,

in which unknown model parameters ω1, ω2 are critical frequencies and corresponding orders
α1, α2 with their values given in Table 3 and relevant frequency characteristic of both models
in Fig. 6.
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Figure 5: ARX model results for subsystem 2.
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Figure 6: Frequency-domain comparison between ARX and fractional-order model.

k α1 ω1 α2 ω2 α3 ω3

1.822428 1.566772 30.633108 0.820903 17.787691 1.160627 8.535039

Table 3: Optimal parameters of the fractional-order model (fitness function from eq. (2),
J = 7.831).

4.2.3 Subsystem 3: ascending aorta - descending aorta

Considering the discrete-time representation (1) of ARX model given in previous section, the
polynomials A and B for subsystem 3 are:

A(z) = 1− 3.251z−1 + 3.078z−2 − 0.2822z−3 − 0.3753z−4 − 0.07941z−5 − 0.2257z−6

− 0.08923z−7 + 0.08502z−8 + 0.09687z−9 + 0.01037z−10 + 0.2238z−11

− 0.1979z−12 + 0.1562z−13 − 0.285z−14 + 0.1357z−15,

B(z) = 0.4888− 1.6z−1 + 1.542z−2 − 0.1624z−3 − 0.195z−4 − 0.04065z−5 − 0.1073z−6

− 0.04306z−7 + 0.04778z−8 + 0.06468z−9 + 0.003471z−10 + 0.1286z−11

− 0.1059z−12 − 0.07725z−13 + 0.05664z−14.

The optimal ARX model is obtained with 30 parameters in total. In Figure 7a comparison
between the time-domain responses provided by the ARX model and experimental data is
given. By observing relevant part of frequency characteristic of the ARX model as seen in Fig.
7b following model structure 5 is obtained. Parameter values are given in Table 4 and relevant
frequency characteristic of both models in Fig. 8.

k α1 ω1 α2 ω2

2.913022 1.120432 27.740819 1.671349 75.516957

Table 4: Optimal parameters of the fractional-order model (fitness function from eq. (2),
J = 20.0913).
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(a) Time-domain response comparison between ARX model and experimental data.
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Figure 7: ARX model results for subsystem 3.
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Figure 8: Frequency-domain comparison between ARX and fractional-order model.
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4.2.4 Subsystem 4: ascending aorta - left common carotid artery

Considering the discrete-time representation (1) of ARX model given in previous section, the
polynomials A and B for subsystem 4 are:

A(z) = 1− 3.513z−1 + 3.795z−2 − 0.7534z−3 − 0.6673z−4 − 0.5986z−5 + 0.6984z−6

+ 0.05848z−7 − 0.1193z−8,

B(z) = 0.556− 1.985z−1 + 2.267z−2 − 0.4822z−3 − 0.4268z−4 − 0.3845z−5

+ 0.6625z−6 − 0.2069z−7.

The optimal ARX model is obtained with 16 parameters in total. In Figure 9a comparison
between the time-domain responses provided by the ARX model and experimental data is
given. By observing relevant part of frequency characteristic of the ARX model as seen in Fig.
9b the following model structure is obtained:

G(s) = k

(
s
ω1

+ 1
)α1

(
s
ω2

+ 1
)α2(

s
ω3

+ 1
)α3

(
s
ω4

+ 1
)α4

, (6)

in which unknown model parameters ω1, ω2, ω3, ω4 are critical frequencies and corresponding
orders α1, α2, α3, α4 with their values given in Table 5 and relevant frequency characteristic of
both models in Fig. 10.

k α1 ω1 α2 ω2 α3 ω3 α4 ω4

1.252332 1.015567 22.017415 0.989481 7.277634 1.323887 33.682557 0.966054 5.537856

Table 5: Optimal parameters of the fractional-order model (fitness function from eq. (2),
J = 2.983).

5 Conclusion

The complexity of the cardiovascular system necessitates the development of sophisticated mod-
els for simulating cardiovascular diseases. Our research introduces a simplified fractional-order
model that builds upon traditional models, enhancing cardiovascular simulations and offering
valuable insights into conditions such as atherosclerosis, hypertension, heart failure, and arterial
stiffness.

The strength of this fractional-order model lies in its simplicity and interpretability, making
it more practical for real-time monitoring and clinical applications compared to more complex
models. This model serves as a foundational tool for understanding cardiovascular dynamics
and supports further research and development. Its effectiveness in simulating pathological
conditions such as arrhythmias and the impact of various therapeutic interventions highlights
its versatility and adaptability, establishing it as a significant asset for both research and clinical
practice.
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Figure 9: ARX model results for subsystem 4.
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Figure 10: Frequency-domain comparison between ARX and fractional-order models.
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[9] M. Kapetina, P. Lino, G. Maione, and M. Rapaić. Estimation of non-integer order models to repre-
sent the pressure dynamics in common-rail natural gas engines. IFAC-PapersOnLine, 50(1):14551–
14556, 2017.

[10] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948. IEEE, 1995.

[11] L. Ljung. System Identification: Theory for the User. Prentice Hall information and system
sciences series. Prentice Hall PTR, 1999.

[12] S. Magder. The meaning of blood pressure. Critical Care, 22(1):257, 2018.
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